Mercurial > hg > Members > kono > Proof > category
changeset 791:376c07159acf
deduction theorem
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 21 Apr 2019 17:43:01 +0900 |
parents | 1e7319868d77 |
children | 5bee48f7c126 |
files | deductive.agda |
diffstat | 1 files changed, 43 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deductive.agda Sun Apr 21 17:43:01 2019 +0900 @@ -0,0 +1,43 @@ +module deductive (Atom : Set) where + +-- Deduction Theorem + +-- positive logic ( deductive system based on graph ) + +data Obj : Set where + ⊤ : Obj + atom : Atom → Obj + _∧_ : Obj → Obj → Obj + _<=_ : Obj → Obj → Obj + +data Arrow : Obj → Obj → Set where + hom : (a b : Obj) → Arrow a b + id : (a : Obj ) → Arrow a a + _・_ : {a b c : Obj } → Arrow b c → Arrow a b → Arrow a c + ○ : {a : Obj } → Arrow a ⊤ + π : {a b : Obj } → Arrow ( a ∧ b ) a + π' : {a b : Obj } → Arrow ( a ∧ b ) b + <_,_> : {a b c : Obj } → Arrow c a → Arrow c b → Arrow c (a ∧ b) + ε : {a b : Obj } → Arrow ((a <= b) ∧ b ) a + _* : {a b c : Obj } → Arrow (c ∧ b ) a → Arrow c ( a <= b ) + +-- every proof b → c with assumption a has following forms + +data φ {a : Obj} ( x : Arrow ⊤ a ) : {b c : Obj} → Arrow b c → Set where + i : {b c : Obj} → φ x ( hom b c ) + ii : φ x {⊤} {a} x + iii : {b c' c'' : Obj } { f : Arrow b c' } { g : Arrow b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x < f , g > + iv : {b c d : Obj } { f : Arrow d c } { g : Arrow b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ・ g ) + v : {b c' c'' : Obj } { f : Arrow (b ∧ c') c'' } (ψ : φ x f ) → φ x ( f * ) + +α : {a b c : Obj } → Arrow (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) +α = < π ・ π , < π' ・ π , π' > > + +-- genetate (a ∧ b) → c proof from proof b → c with assumption a + +kx∈a : {a b c : Obj } → ( x : Arrow ⊤ a ) → {z : Arrow b c } → ( y : φ {a} x z ) → Arrow (a ∧ b) c +kx∈a x {k} i = k ・ π' +kx∈a x ii = π +kx∈a x (iii ψ χ ) = < kx∈a x ψ , kx∈a x χ > +kx∈a x (iv ψ χ ) = kx∈a x ψ ・ < π , kx∈a x χ > +kx∈a x (v ψ ) = ( kx∈a x ψ ・ α ) *