Mercurial > hg > Members > kono > Proof > category
changeset 965:396bf884f5e7
bi-cartesian
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 25 Feb 2021 02:01:37 +0900 |
parents | 0128a662eb02 |
children | cb970ab7c32b |
files | src/CCC.agda src/ToposEx.agda src/bi-ccc.agda |
diffstat | 3 files changed, 96 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/CCC.agda Tue Feb 23 16:32:06 2021 +0900 +++ b/src/CCC.agda Thu Feb 25 02:01:37 2021 +0900 @@ -149,7 +149,7 @@ (Ker : {a : Obj A} → ( h : Hom A a Ω ) → Equalizer A h (A [ ⊤ o (○ a) ])) (char : {a b : Obj A} → (m : Hom A b a) → Mono A m → Hom A a Ω) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where field - char-ker : {a b : Obj A } {h : Hom A a Ω} + char-ker : {a b : Obj A } (h : Hom A a Ω) → A [ char (equalizer (Ker h)) record { isMono = λ f g → monic (Ker h) } ≈ h ] ker-char : {a b : Obj A} → (m : Hom A b a) → (mono : Mono A m) → Iso A b ( equalizer-c (Ker ( char m mono )))
--- a/src/ToposEx.agda Tue Feb 23 16:32:06 2021 +0900 +++ b/src/ToposEx.agda Thu Feb 25 02:01:37 2021 +0900 @@ -61,4 +61,26 @@ IsEqualizer.k (isEqualizer (Ker t h)) p1' (lemma1 p1' p2' eq) ≈⟨ IsEqualizer.uniqueness (isEqualizer (Ker t h)) pe1 ⟩ p' ∎ +topos-m-pullback : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( 1 : Obj A) (○ : (a : Obj A ) → Hom A a 1) + → (e2 : {a : Obj A} → ∀ { f : Hom A a 1 } → A [ f ≈ ○ a ] ) + → (t : Topos A 1 ○ ) → {a b : Obj A} → (m : Hom A b a) → (mono : Mono A m ) → Pullback A (char t m mono ) (⊤ t) +topos-m-pullback A 1 ○ e2 t {a} {b} m mono = topos-pullback A 1 ○ e2 t {a} (char t m mono) +--- +--- +--- + +-- SubObjectFunctor : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) → ( 1 : Obj A) (○ : (a : Obj A ) → Hom A a 1) +-- → (e2 : {a : Obj A} → ∀ { f : Hom A a 1 } → A [ f ≈ ○ a ] ) → (t : Topos A 1 ○ ) → Functor A A +-- SubObjectFunctor A 1 ○ e2 t = record { +-- FObj = λ x → Ω t +-- ; FMap = {!!} +-- ; isFunctor = record { +-- identity = {!!} +-- ; distr = {!!} +-- ; ≈-cong = {!!} +-- } +-- } + + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/bi-ccc.agda Thu Feb 25 02:01:37 2021 +0900 @@ -0,0 +1,73 @@ +module bi-ccc where + +open import Category +open import CCC +open import Level +open import HomReasoning +open import cat-utility + +record IsBICCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) + ( ⊥ : Obj A) -- 0 + ( □ : (a : Obj A ) → Hom A ⊥ a ) + ( _∨_ : Obj A → Obj A → Obj A ) + ( [_,_] : {a b c : Obj A } → Hom A a c → Hom A b c → Hom A (a ∨ b) c ) + ( κ : {a b : Obj A } → Hom A a (a ∨ b) ) + ( κ' : {a b : Obj A } → Hom A b (a ∨ b) ) + : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where + field + e5 : {a : Obj A} → { f : Hom A ⊥ a } → A [ f ≈ □ a ] + e6a : {a b c : Obj A} → { f : Hom A a c }{ g : Hom A b c } → A [ A [ [ f , g ] o κ ] ≈ f ] + e6b : {a b c : Obj A} → { f : Hom A a c }{ g : Hom A b c } → A [ A [ [ f , g ] o κ' ] ≈ g ] + e6c : {a b c : Obj A} → { h : Hom A (a ∨ b ) c } → A [ [ A [ h o κ ] , A [ h o κ' ] ] ≈ h ] + κ-cong : {a b c : Obj A} → { f f' : Hom A a c }{ g g' : Hom A b c } → A [ f ≈ f' ] → A [ g ≈ g' ] → A [ [ f , g ] ≈ [ f' , g' ] ] + +record BICCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where + field + ⊥ : Obj A + □ : (a : Obj A ) → Hom A ⊥ a + _∨_ : Obj A → Obj A → Obj A + [_,_] : {a b c : Obj A } → Hom A a c → Hom A b c → Hom A (a ∨ b) c + κ : {a b : Obj A } → Hom A a (a ∨ b) + κ' : {a b : Obj A } → Hom A b (a ∨ b) + isBICCC : IsBICCC A ⊥ □ _∨_ [_,_] κ κ' + +bi-ccc-⊥ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) → (C : CCC A ) → (B : BICCC A ) → {a : Obj A} → Hom A a (BICCC.⊥ B) → Iso A a (BICCC.⊥ B) +bi-ccc-⊥ A C B {a} f = record { + ≅→ = f + ; ≅← = □ a + ; iso→ = bi-ccc-1 + ; iso← = bi-ccc-2 } where + open ≈-Reasoning A + open CCC.CCC C + open BICCC B + bi-ccc-0 : A [ A [ □ ( a ∧ ⊥ ) o π' ] ≈ id1 A ( a ∧ ⊥ ) ] + bi-ccc-0 = begin + □ ( a ∧ ⊥ ) o π' + ≈⟨ {!!} ⟩ + id1 A ( a ∧ ⊥ ) + ∎ + bi-ccc-1 : A [ A [ □ a o f ] ≈ id1 A a ] + bi-ccc-1 = begin + □ a o f + ≈⟨ resp (sym (IsCCC.e3b isCCC) ) (sym ( IsBICCC.e5 isBICCC)) ⟩ + (π o □ ( a ∧ ⊥ )) o (π' o < id1 A a , f > ) + ≈⟨ sym assoc ⟩ + π o ( □ ( a ∧ ⊥ ) o (π' o < id1 A a , f > )) + ≈⟨ cdr (assoc) ⟩ + π o ( □ ( a ∧ ⊥ ) o π' ) o < id1 A a , f > + ≈⟨ cdr (car bi-ccc-0) ⟩ + π o id1 A _ o < id1 A a , f > + ≈⟨ cdr idL ⟩ + π o < id1 A a , f > + ≈⟨ IsCCC.e3a isCCC ⟩ + id1 A a + ∎ + bi-ccc-2 : A [ A [ f o □ a ] ≈ id1 A ⊥ ] + bi-ccc-2 = begin + f o □ a + ≈⟨ IsBICCC.e5 isBICCC ⟩ + □ _ + ≈↑⟨ IsBICCC.e5 isBICCC ⟩ + id1 A ⊥ + ∎ +