Mercurial > hg > Members > kono > Proof > category
changeset 849:3b7b8e510047
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 04 Apr 2020 09:41:38 +0900 |
parents | 18bbd9e31c48 |
children | 40c6e806bda0 |
files | CCCGraph1.agda |
diffstat | 1 files changed, 14 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Fri Apr 03 18:44:15 2020 +0900 +++ b/CCCGraph1.agda Sat Apr 04 09:41:38 2020 +0900 @@ -34,9 +34,7 @@ _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c id a ・ g = g - ○ a ・ g = ○ _ < f , g > ・ h = < f ・ h , g ・ h > - f ・ id b = f iv f (id _) ・ h = iv f h iv π < g , g₁ > ・ h = g ・ h iv π' < g , g₁ > ・ h = g₁ ・ h @@ -44,6 +42,8 @@ iv (f *) < g , g₁ > ・ h = iv (f *) < g ・ h , g₁ ・ h > iv f ( (○ a)) ・ g = iv f ( ○ _ ) iv f (iv f₁ g) ・ h = iv f ( (iv f₁ g) ・ h ) + ○ a ・ g = ○ _ + f ・ id b = f _==_ : {a b : Objs } → ( x y : Arrows a b ) → Set (c₁ ⊔ c₂) _==_ {a} {b} x y = (x ・ id _ ) ≡ ( y ・ id _ ) @@ -52,7 +52,7 @@ identityR≡ {a} {.a} {id a} = refl identityR≡ {a} {⊥} {○ a} = refl identityR≡ {a} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) identityR≡ identityR≡ - identityR≡ {a} {b} {iv x y} = refl + identityR≡ {a} {b} {iv x y} = {!!} identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) == f identityR {a} {b} {f} = cong ( λ k → k ・ id a ) ( identityR≡ {_} {_} {f} ) @@ -63,13 +63,19 @@ ==←≡ eq = cong (λ k → k ・ id _) eq assoc-iv : {a b c d : Objs} (x : Arrow c d ) (f : Arrows b c ) ( g : Arrows a b ) → iv x f ・ g ≡ iv x ( f ・ g ) - assoc-iv x f (id _) = {!!} - assoc-iv x (id a) g = {!!} - assoc-iv x (○ a) g = {!!} + assoc-iv x f (id _) = begin + iv x f ・ id _ + ≡⟨ identityR≡ ⟩ + iv x f + ≡⟨ sym (cong (λ k → iv x k ) identityR≡) ⟩ + iv x (f ・ id _) + ∎ where open ≡-Reasoning + assoc-iv x (id a) g = refl + assoc-iv x (○ a) g = refl assoc-iv π < f , f₁ > g = {!!} assoc-iv π' < f , f₁ > g = {!!} - assoc-iv ε < f , f₁ > g = {!!} - assoc-iv (x *) < f , f₁ > g = {!!} + assoc-iv ε < f , f₁ > g = refl + assoc-iv (x *) < f , f₁ > g = refl assoc-iv x (iv f f₁) g = {!!} PL : Category (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂)