Mercurial > hg > Members > kono > Proof > category
changeset 956:468288f3dfe5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 21 Feb 2021 10:26:00 +0900 |
parents | 5c8694236ff3 |
children | e29b6488b179 |
files | src/equalizer.agda |
diffstat | 1 files changed, 87 insertions(+), 34 deletions(-) [+] |
line wrap: on
line diff
--- a/src/equalizer.agda Sun Feb 21 04:23:24 2021 +0900 +++ b/src/equalizer.agda Sun Feb 21 10:26:00 2021 +0900 @@ -21,31 +21,6 @@ open import cat-utility -- --- Burroni's Flat Equational Definition of Equalizer --- - -record Burroni { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where - field - equ : {a b : Obj A } → (f g : Hom A a b) → Obj A - α : {a b : Obj A } → (f g : Hom A a b) → Hom A (equ f g) a - γ : {a b d : Obj A } → (f g : Hom A a b) → (h : Hom A d a ) → Hom A (equ (A [ f o h ]) (A [ g o h ])) (equ f g) - δ : {a b : Obj A } → (f g : Hom A a b) → A [ f ≈ g ] → Hom A a (equ f g) - b1 : A [ A [ f o α f g ] ≈ A [ g o α f g ] ] - b1k : {d : Obj A } {k : Hom A d (equ f g)} → A [ A [ f o A [ α f g o k ] ] ≈ A [ g o A [ α f g o k ] ] ] - b1k {d} {k} = ≈-Reasoning.trans-hom A (≈-Reasoning.assoc A) (≈-Reasoning.trans-hom A (≈-Reasoning.car A b1) (≈-Reasoning.sym A (≈-Reasoning.assoc A))) - field - b2 : {d : Obj A } → {h : Hom A d a } → A [ A [ ( α f g ) o (γ f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] - b3 : {d : Obj A} → {h : Hom A d a } → A [ A [ α f f o δ f f (≈-Reasoning.refl-hom A) ] ≈ id1 A a ] - b4 : {d : Obj A } {h : Hom A d a } {k : Hom A d (equ f g)} → - A [ A [ γ f g ( A [ α f g o k ] ) o ( δ (A [ f o A [ α f g o k ] ] ) (A [ g o A [ α f g o k ] ] ) b1k )] ≈ k ] - β : { d a b : Obj A} → (f g : Hom A a b) → (h : Hom A d a ) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d (equ f g) - β {d} {a} {b} f g h eq = A [ γ f g h o δ (A [ f o h ]) (A [ g o h ]) eq ] - -open Equalizer -open IsEqualizer -open Burroni - --- -- Some obvious conditions for k (fe = ge) → ( fh = gh ) -- @@ -68,6 +43,31 @@ g o ( e o h ) ∎ +-- +-- Burroni's Flat Equational Definition of Equalizer +-- + +record Burroni {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where + field + equ : {a b : Obj A } → (f g : Hom A a b) → Obj A + α : {a b : Obj A } → (f g : Hom A a b) → Hom A (equ f g) a + γ : {a b d : Obj A } → (f g : Hom A a b) → (h : Hom A d a ) → Hom A (equ (A [ f o h ]) (A [ g o h ])) (equ f g) + δ : {a b : Obj A } → (f g : Hom A a b) → A [ f ≈ g ] → Hom A a (equ f g) + b1 : A [ A [ f o α f g ] ≈ A [ g o α f g ] ] + b1k : {d : Obj A } {k : Hom A d (equ f g)} → A [ A [ f o A [ α f g o k ] ] ≈ A [ g o A [ α f g o k ] ] ] + b1k {d} {k} = ≈-Reasoning.trans-hom A (≈-Reasoning.assoc A) (≈-Reasoning.trans-hom A (≈-Reasoning.car A b1) (≈-Reasoning.sym A (≈-Reasoning.assoc A))) + field + b2 : {d : Obj A } → {h : Hom A d a } → A [ A [ ( α f g ) o (γ f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] + b3 : {d : Obj A} → {h : Hom A d a } → A [ A [ α f f o δ f f (≈-Reasoning.refl-hom A) ] ≈ id1 A a ] + b4 : {d : Obj A } {h : Hom A d a } {k : Hom A d (equ f g)} → + A [ A [ γ f g ( A [ α f g o k ] ) o ( δ (A [ f o A [ α f g o k ] ] ) (A [ g o A [ α f g o k ] ] ) (f1=gh b1 ) )] ≈ k ] + β : { d a b : Obj A} → (f g : Hom A a b) → (h : Hom A d a ) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d (equ f g) + β {d} {a} {b} f g h eq = A [ γ f g h o δ (A [ f o h ]) (A [ g o h ]) eq ] + +open Equalizer +open IsEqualizer +open Burroni + ------------------------------- -- -- Every equalizer is monic @@ -248,18 +248,71 @@ ---- lemma-equ1 : {a b : Obj A} (f g : Hom A a b) - → ({a b : Obj A} (f g : Hom A a b) → Equalizer A f g ) → Burroni A f g + → ({a b : Obj A} (f g : Hom A a b) → Equalizer A f g ) → Burroni f g lemma-equ1 {a} {b} f g eqa = record { equ = λ f g → equalizer-c (eqa f g) ; α = λ f g → equalizer (eqa f g) ; γ = λ f g h → k (isEqualizer (eqa f g )) ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) - {!!} -- (fe=ge (isEqualizer (eqa (A [ f o h ] ) (A [ g o h ] )))) - ; δ = {!!} + (lemma-equ4 f g h) + ; δ = λ {a} {b} f g f=g → k (isEqualizer (eqa {a} {b} f g )) {a} (id1 A a) (f1=g1 f=g _ ) ; b1 = fe=ge (isEqualizer (eqa f g )) - ; b2 = λ {d} {h} → {!!} - ; b3 = {!!} - ; b4 = {!!} - } + ; b2 = lemma-b2 + ; b3 = λ {d} {h} → lemma-b3 f f {h} (≈-Reasoning.refl-hom A) + ; b4 = lemma-b4 + } where + ieqa : {a b : Obj A} (f g : Hom A a b) → IsEqualizer A ( equalizer (eqa f g )) f g + ieqa f g = isEqualizer (eqa f g) + lemma-b3 : {a b d : Obj A} (f g : Hom A a b ) { h : Hom A d a } + → (f=g : A [ f ≈ g ] ) → A [ A [ equalizer (eqa f g ) o k (isEqualizer (eqa f g)) (id1 A a) (f1=g1 f=g _ ) ] ≈ id1 A a ] + lemma-b3 {a} f g f=g = let open ≈-Reasoning (A) in + begin + equalizer (eqa f g) o k (isEqualizer (eqa f g)) (id a) (f1=g1 f=g _ ) + ≈⟨ ek=h (isEqualizer (eqa f g )) ⟩ + id a + ∎ + lemma-equ4 : {a b d : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → + A [ A [ f o A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ] ≈ A [ g o A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ] ] + lemma-equ4 {a} {b} {d} f g h = let open ≈-Reasoning (A) in + begin + f o ( h o equalizer (eqa (f o h) ( g o h ))) + ≈⟨ assoc ⟩ + (f o h) o equalizer (eqa (f o h) ( g o h )) + ≈⟨ fe=ge (isEqualizer (eqa (A [ f o h ]) (A [ g o h ]))) ⟩ + (g o h) o equalizer (eqa (f o h) ( g o h )) + ≈↑⟨ assoc ⟩ + g o ( h o equalizer (eqa (f o h) ( g o h ))) + ∎ + lemma-b2 : {d : Obj A} {h : Hom A d a} → A [ + A [ equalizer (eqa f g) o k (isEqualizer (eqa f g)) (A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 {a} {b} f g h) ] + ≈ A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ] + lemma-b2 {d} {h} = let open ≈-Reasoning (A) in + begin + equalizer (eqa f g) o k (isEqualizer (eqa f g)) (h o equalizer (eqa (f o h) (g o h))) (lemma-equ4 {a} {b} f g h) + ≈⟨ ek=h (isEqualizer (eqa f g)) ⟩ + h o equalizer (eqa (f o h ) ( g o h )) + ∎ + lemma-b4 : {d : Obj A} {j : Hom A d (equalizer-c (eqa f g))} → A [ + A [ k (ieqa f g) (A [ A [ equalizer (eqa f g) o j ] o + equalizer (eqa (A [ f o A [ equalizer (eqa f g ) o j ] ]) (A [ g o A [ equalizer (eqa f g ) o j ] ])) ]) + (lemma-equ4 {a} {b} {d} f g (A [ equalizer (eqa f g) o j ])) + o k (ieqa (A [ f o A [ equalizer (eqa f g) o j ] ]) (A [ g o A [ equalizer (eqa f g) o j ] ])) (id1 A _) + (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _))] ≈ j ] + lemma-b4 {d} {j} = let open ≈-Reasoning (A) in + begin + k (ieqa f g) (( ( equalizer (eqa f g) o j ) o equalizer (eqa (( f o ( equalizer (eqa f g ) o j ) )) (( g o ( equalizer (eqa f g ) o j ) ))) )) + (lemma-equ4 {a} {b} {d} f g (( equalizer (eqa f g) o j ))) + o k (ieqa (f o ( equalizer (eqa f g) o j )) ( g o (equalizer (eqa f g) o j ))) (id1 A _) + (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _)) + ≈⟨ car (uniqueness (ieqa f g) {!!}) ⟩ + {!!} o {!!} + ≈⟨ cdr (uniqueness (ieqa (f o ( equalizer (eqa f g) o j )) ( g o (equalizer (eqa f g) o j ))) {!!}) ⟩ + {!!} o {!!} + ≈⟨ {!!} ⟩ + j + ∎ + + + -------------------------------- -- @@ -267,7 +320,7 @@ -- lemma-equ2 : {a b : Obj A} (f g : Hom A a b) - → ( bur : Burroni A f g ) → IsEqualizer A {equ bur f g} {a} {b} (α bur f g ) f g + → ( bur : Burroni f g ) → IsEqualizer A {equ bur f g} {a} {b} (α bur f g ) f g lemma-equ2 {a} {b} f g bur = record { fe=ge = fe=ge1 ; k = k1 ; @@ -297,7 +350,7 @@ begin k1 {d} h eq ≈⟨ {!!} ⟩ - {!!} + γ bur f g (α bur f g o k' ) o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur))) ≈⟨ b4 bur ⟩ k' ∎