Mercurial > hg > Members > kono > Proof > category
changeset 957:e29b6488b179
b4
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 21 Feb 2021 12:57:05 +0900 |
parents | 468288f3dfe5 |
children | 9089540fe89d |
files | src/equalizer.agda |
diffstat | 1 files changed, 27 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/equalizer.agda Sun Feb 21 10:26:00 2021 +0900 +++ b/src/equalizer.agda Sun Feb 21 12:57:05 2021 +0900 @@ -297,21 +297,35 @@ (lemma-equ4 {a} {b} {d} f g (A [ equalizer (eqa f g) o j ])) o k (ieqa (A [ f o A [ equalizer (eqa f g) o j ] ]) (A [ g o A [ equalizer (eqa f g) o j ] ])) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _))] ≈ j ] - lemma-b4 {d} {j} = let open ≈-Reasoning (A) in + -- h = equalizer (eqa f g) o j + lemma-b4 {d} {j} = begin - k (ieqa f g) (( ( equalizer (eqa f g) o j ) o equalizer (eqa (( f o ( equalizer (eqa f g ) o j ) )) (( g o ( equalizer (eqa f g ) o j ) ))) )) - (lemma-equ4 {a} {b} {d} f g (( equalizer (eqa f g) o j ))) - o k (ieqa (f o ( equalizer (eqa f g) o j )) ( g o (equalizer (eqa f g) o j ))) (id1 A _) - (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _)) - ≈⟨ car (uniqueness (ieqa f g) {!!}) ⟩ - {!!} o {!!} - ≈⟨ cdr (uniqueness (ieqa (f o ( equalizer (eqa f g) o j )) ( g o (equalizer (eqa f g) o j ))) {!!}) ⟩ - {!!} o {!!} - ≈⟨ {!!} ⟩ + k (ieqa f g) (( h o equalizer (eqa (( f o h )) (( g o h ))) )) (lemma-equ4 {a} {b} {d} f g (h)) + o k (ieqa (f o h) ( g o h)) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _)) + ≈↑⟨ uniqueness (ieqa f g) ( begin + equalizer (eqa f g) o ( k (ieqa f g) (( h o equalizer (eqa ( f o h ) ( g o h )) )) (lemma-equ4 {a} {b} {d} f g h) + o k (ieqa (f o h) ( g o h)) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _)) ) + ≈⟨ assoc ⟩ + (equalizer (eqa f g) o ( k (ieqa f g) (( h o equalizer (eqa ( f o h ) ( g o h )) )) (lemma-equ4 {a} {b} {d} f g h))) + o k (ieqa (f o h) ( g o h)) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _)) + ≈⟨ car (ek=h (ieqa f g) ) ⟩ + (( h o equalizer (eqa ( f o h ) ( g o h )) )) + o k (ieqa (f o h) ( g o h)) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _)) + ≈↑⟨ assoc ⟩ + h o (equalizer (eqa ( f o h ) ( g o h )) o k (ieqa (f o h) ( g o h)) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _))) + ≈⟨ cdr (ek=h (ieqa (f o h) ( g o h))) ⟩ + h o id1 A _ + ≈⟨ idR ⟩ + h + ∎ + ) ⟩ + k (ieqa f g) h (f1=gh (fe=ge (ieqa f g)) ) + ≈⟨ uniqueness (ieqa f g) refl-hom ⟩ j - ∎ - - + ∎ where + open ≈-Reasoning A + h : Hom A d a + h = equalizer (eqa f g) o j --------------------------------