Mercurial > hg > Members > kono > Proof > category
changeset 822:4c0580d9dda4
from cart to graph, hom equality to set equality
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 01 May 2019 21:16:58 +0900 |
parents | fbbc9c03bfed |
children | f57c9603d989 |
files | CCCGraph.agda negnat.agda |
diffstat | 2 files changed, 56 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Wed May 01 15:16:54 2019 +0900 +++ b/CCCGraph.agda Wed May 01 21:16:58 2019 +0900 @@ -335,14 +335,46 @@ fmap : {c₁ c₂ ℓ : Level} → {a b : Obj (Cart {c₁} {c₂} {ℓ} ) } → Hom (Cart {c₁} {c₂} {ℓ} ) a b → Hom (Grp {c₁} {c₂}) ( fobj a ) ( fobj b ) fmap f = record { vmap = FObj (cmap f) ; emap = FMap (cmap f) } +≃-cong : {c₁ c₂ ℓ : Level} (B : Category c₁ c₂ ℓ ) → {a b a' b' : Obj B } + → { f f' : Hom B a b } + → { g g' : Hom B a' b' } + → [_]_~_ B f g → B [ f ≈ f' ] → B [ g ≈ g' ] → [_]_~_ B f' g' +≃-cong B {a} {b} {a'} {b'} {f} {f'} {g} {g'} (refl {g2} eqv) f=f' g=g' = let open ≈-Reasoning B in refl {_} {_} {_} {B} {a'} {b'} {f'} {g'} ( begin + f' + ≈↑⟨ f=f' ⟩ + f + ≈⟨ eqv ⟩ + g + ≈⟨ g=g' ⟩ + g' + ∎ ) + + UX : {c₁ c₂ ℓ : Level} → Functor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁} {c₂}) FObj (UX {c₁} {c₂} {ℓ}) a = fobj a FMap UX f = fmap f isFunctor (UX {c₁} {c₂} {ℓ}) = isf where + open import HomReasoning + lemma0 : {A B : Category c₁ c₂ ℓ } { f g : Functor A B } → {a b : Obj B} → [_]_~_ B (id1 B a) (id1 B b) → a ≡ b + lemma0 {A} {B} {f} {g} (refl eqv) = refl + lemma03 : {A B : Category c₁ c₂ ℓ } { f g : Functor A B } → {a : Obj A} → [_]_~_ B (FMap f ( id1 A a)) (FMap g ( id1 A a)) → FObj f a ≡ FObj g a + lemma03 {A} {B} {f} {g} eq = lemma0 {A} {B} {f} {g} ( ≃-cong B eq (IsFunctor.identity (Functor.isFunctor (f)))(IsFunctor.identity (Functor.isFunctor (g))) ) + lemma01 : {A B : Category c₁ c₂ ℓ } { f g : Functor A B } → {a : Obj A} → f ≃ g → FObj f a ≡ FObj g a + lemma01 {A} {B} {f} {g} {a} eq = lemma03 {A} {B} {f} {g} (eq (id1 A a)) + lemma1 : {A B : Obj (Cart {c₁} {c₂} {ℓ}) } { f g : Hom (Cart {c₁} {c₂} {ℓ}) A B } + → (Cart {c₁} {c₂} {ℓ}) [ f ≈ g ] → vmap (fmap f) ≡ vmap (fmap g) + lemma1 {a} {b} {f} {g} eq = extensionality Sets ( λ z → lemma01 {cat a} {cat b} {cmap f} {cmap g} eq ) + lemma20 : {A B : Category c₁ c₂ ℓ } {a b : Obj A} → ( e : Hom A a b ) → ( g : Functor A B ) → ( f : Hom A a b → Hom B (FObj g a) (FObj g b) ) + → B [ f e ≈ FMap g e ] → f e ≅ FMap g e + lemma20 e g f eq = {!!} + lemma2 : {A B : Obj (Cart {c₁} {c₂} {ℓ}) } { f g : Hom (Cart {c₁} {c₂} {ℓ}) A B} → + (Cart {c₁} {c₂} {ℓ}) [ f ≈ g ] → vmap (fmap f) ≡ vmap (fmap g) → {a b : vertex (fobj A)} {e : edge (fobj A) a b} → emap (fmap f) e ≅ emap (fmap g) e + lemma2 {A} {B} {f} {g} eq refl {a} {b} {e} with ( eq e ) + ... | refl {h} eqv = lemma20 e (cmap g) (FMap (cmap f)) eqv isf : IsFunctor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁} {c₂}) fobj fmap IsFunctor.identity isf = mrefl refl refl IsFunctor.distr isf = mrefl refl refl - IsFunctor.≈-cong isf eq = mrefl {!!} {!!} + IsFunctor.≈-cong isf {a} {b} {f} {g} eq = mrefl (lemma1 {a} {b} {f} {g} eq ) (lemma2 {a} {b} {f} {g} eq (lemma1 {a} {b} {f} {g} eq )) --- --- open ccc-from-graph
--- a/negnat.agda Wed May 01 15:16:54 2019 +0900 +++ b/negnat.agda Wed May 01 21:16:58 2019 +0900 @@ -165,6 +165,29 @@ lemma2 : { n : ℕ } -> isEven (suc (suc n )) ≡ isEven n lemma2 = refl +data One : Set where + * : One + +lemma1 : ( x y : One ) → x ≡ y +lemma1 * * = refl + +lemma2 : {A : Set} ( x : A) → x ≡ x +lemma2 x = refl +open import Data.Empty +open import Relation.Nullary +open import Level +lemma4 : Set (Level.suc Level.zero) +lemma4 = {A : Set} ( x y : A) → ¬ ( ¬ x ≡ y ) + +data A : Set where + x y z : A + +data _==_ : ( a b : A ) → Set where + x=y : x == y + +lemma3 : ( a b : A ) → a == b → ¬ a ≡ b +lemma3 _ _ x=y = λ () +