Mercurial > hg > Members > kono > Proof > category
changeset 821:fbbc9c03bfed
Grp and Cart
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 01 May 2019 15:16:54 +0900 |
parents | 658daaa74df3 |
children | 4c0580d9dda4 |
files | CCCGraph.agda discrete.agda |
diffstat | 2 files changed, 69 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Wed May 01 10:16:45 2019 +0900 +++ b/CCCGraph.agda Wed May 01 15:16:54 2019 +0900 @@ -102,7 +102,7 @@ open Graph - data Objs (G : Graph ) : Set where -- formula + data Objs (G : Graph {Level.zero} {Level.zero} ) : Set where -- formula atom : (vertex G) → Objs G ⊤ : Objs G _∧_ : Objs G → Objs G → Objs G @@ -168,7 +168,7 @@ record SM {v : Level} : Set (suc v) where field - graph : Graph {v} + graph : Graph {v} {v} sobj : vertex graph → Set smap : { a b : vertex graph } → edge graph a b → sobj a → sobj b @@ -259,10 +259,10 @@ refl = λ {f} → let open ≈-Reasoning (CAT) in refl-hom {cat A} {cat B} {cmap f} ; sym = λ {f} {g} → let open ≈-Reasoning (CAT) in sym-hom {cat A} {cat B} {cmap f} {cmap g} ; trans = λ {f} {g} {h} → let open ≈-Reasoning (CAT) in trans-hom {cat A} {cat B} {cmap f} {cmap g} {cmap h} } - ; identityL = let open ≈-Reasoning (CAT) in idL {_} {_} {_} {_} {_} - ; identityR = let open ≈-Reasoning (CAT) in idR - ; o-resp-≈ = IsCategory.o-resp-≈ ( Category.isCategory CAT) - ; associative = let open ≈-Reasoning (CAT) in assoc + ; identityL = λ {x} {y} {f} → let open ≈-Reasoning (CAT) in idL {cat x} {cat y} {cmap f} {_} {_} + ; identityR = λ {x} {y} {f} → let open ≈-Reasoning (CAT) in idR {cat x} {cat y} {cmap f} + ; o-resp-≈ = λ {x} {y} {z} {f} {g} {h} {i} → IsCategory.o-resp-≈ ( Category.isCategory CAT) {cat x}{cat y}{cat z} {cmap f} {cmap g} {cmap h} {cmap i} + ; associative = λ {a} {b} {c} {d} {f} {g} {h} → let open ≈-Reasoning (CAT) in assoc {cat a} {cat b} {cat c} {cat d} {cmap f} {cmap g} {cmap h} }} where cart-refl : {A B : CCCObj {c₁} {c₂} {ℓ} } → { x : CCCMap A B } → {a b : Obj ( cat A ) } → (f : Hom ( cat A ) a b) → [ cat B ] FMap (cmap x) f ~ FMap (cmap x) f cart-refl {A} {B} {x} {a} {b} f = [_]_~_.refl ( IsFunctor.≈-cong (isFunctor ( cmap x )) @@ -277,29 +277,73 @@ open import discrete open Graph -record GMap {v : Level} (x y : Graph {v} ) : Set (suc v) where +record GMap {v v' : Level} (x y : Graph {v} {v'} ) : Set (suc v ⊔ v' ) where field vmap : vertex x → vertex y emap : {a b : vertex x} → edge x a b → edge y (vmap a) (vmap b) open GMap -Grp : {v : Level} → Category (suc v) (suc v) v -Grp {v} = record { - Obj = Graph {v} - ; Hom = GMap {v} - ; _o_ = λ f g → record { vmap = λ x → vmap f ( vmap g x ) ; emap = λ x → emap f ( emap g x ) } - ; _≈_ = λ {a} {b} f g → {!!} +open import Relation.Binary.HeterogeneousEquality using (_≅_;refl ) renaming ( sym to ≅-sym ; trans to ≅-trans ; cong to ≅-cong ) + +data _=m=_ {v v' : Level} {x y : Graph {v} {v'}} ( f g : GMap x y ) : Set (v ⊔ v' ) where + mrefl : ( vmap f ≡ vmap g ) → ( {a b : vertex x} → { e : edge x a b } → emap f e ≅ emap g e ) → f =m= g + +_&_ : {v v' : Level} {x y z : Graph {v} {v'}} ( f : GMap y z ) ( g : GMap x y ) → GMap x z +f & g = record { vmap = λ x → vmap f ( vmap g x ) ; emap = λ x → emap f ( emap g x ) } + +Grp : {v v' : Level} → Category (suc (v ⊔ v')) (suc v ⊔ v') (v ⊔ v') +Grp {v} {v'} = record { + Obj = Graph {v} {v'} + ; Hom = GMap {v} {v'} + ; _o_ = _&_ + ; _≈_ = _=m=_ ; Id = record { vmap = λ y → y ; emap = λ f → f } ; isCategory = record { - identityL = {!!} - ; identityR = {!!} - ; o-resp-≈ = {!!} - ; associative = {!!} - }} + isEquivalence = λ {A} {B} → ise {v} {v'} {A} {B} + ; identityL = mrefl refl refl + ; identityR = mrefl refl refl + ; o-resp-≈ = m--resp-≈ + ; associative = mrefl refl refl + }} where + msym : {v v' : Level} {x y : Graph {v} {v'} } { f g : GMap x y } → f =m= g → g =m= f + msym (mrefl refl eq ) = mrefl refl ( ≅-sym eq ) + mtrans : {v v' : Level} {x y : Graph {v} {v'}} { f g h : GMap x y } → f =m= g → g =m= h → f =m= h + mtrans (mrefl refl eq ) (mrefl refl eq1 ) = mrefl refl ( ≅-trans eq eq1 ) + ise : {v v' : Level} {x y : Graph {v} {v'}} → IsEquivalence {_} {v ⊔ v'} {_} ( _=m=_ {v} {v'} {x} {y} ) + ise = record { + refl = λ {x} → mrefl refl refl + ; sym = msym + ; trans = mtrans + } + m--resp-≈ : {v : Level} {A B C : Graph {v} } {f g : GMap A B} {h i : GMap B C} → f =m= g → h =m= i → ( h & f ) =m= ( i & g ) + m--resp-≈ {_} {_} {_} {_} {f} {g} {h} {i} (mrefl refl eq ) (mrefl refl eq1 ) = mrefl refl ( λ {a} {b} {e} → begin + emap h (emap f e) + ≅⟨ ≅-cong ( λ k → emap h k ) eq ⟩ + emap h (emap g e) + ≅⟨ eq1 ⟩ + emap i (emap g e) + ∎ ) + where open Relation.Binary.HeterogeneousEquality.≅-Reasoning + assoc-≈ : {v v' : Level} {A B C D : Graph {v} {v'} } {f : GMap C D} {g : GMap B C} {h : GMap A B} → ( f & ( g & h ) ) =m= ( (f & g ) & h ) + assoc-≈ = mrefl refl refl ---- UX : {c₁ c₂ ℓ : Level} → Functor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁}) ---- UX = {!!} +--- Forgetful functor + +fobj : {c₁ c₂ ℓ : Level} → Obj (Cart {c₁} {c₂} {ℓ} ) → Obj (Grp {c₁} {c₂}) +fobj a = record { vertex = Obj (cat a) ; edge = Hom (cat a) } +fmap : {c₁ c₂ ℓ : Level} → {a b : Obj (Cart {c₁} {c₂} {ℓ} ) } → Hom (Cart {c₁} {c₂} {ℓ} ) a b → Hom (Grp {c₁} {c₂}) ( fobj a ) ( fobj b ) +fmap f = record { vmap = FObj (cmap f) ; emap = FMap (cmap f) } + +UX : {c₁ c₂ ℓ : Level} → Functor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁} {c₂}) +FObj (UX {c₁} {c₂} {ℓ}) a = fobj a +FMap UX f = fmap f +isFunctor (UX {c₁} {c₂} {ℓ}) = isf where + isf : IsFunctor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁} {c₂}) fobj fmap + IsFunctor.identity isf = mrefl refl refl + IsFunctor.distr isf = mrefl refl refl + IsFunctor.≈-cong isf eq = mrefl {!!} {!!} + --- --- open ccc-from-graph ---
--- a/discrete.agda Wed May 01 10:16:45 2019 +0900 +++ b/discrete.agda Wed May 01 15:16:54 2019 +0900 @@ -6,24 +6,24 @@ open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality hiding ( [_] ; sym ) -record Graph { v : Level } : Set (suc v) where +record Graph { v v' : Level } : Set (suc v ⊔ suc v' ) where field vertex : Set v - edge : vertex → vertex → Set v + edge : vertex → vertex → Set v' module graphtocat where open import Relation.Binary.PropositionalEquality - data Chain { v : Level } ( g : Graph {v} ) : ( a b : Graph.vertex g ) → Set v where + data Chain { v v' : Level } ( g : Graph {v} {v'} ) : ( a b : Graph.vertex g ) → Set (v ⊔ v' ) where id : ( a : Graph.vertex g ) → Chain g a a next : { a b c : Graph.vertex g } → (Graph.edge g b c ) → Chain g a b → Chain g a c - _・_ : {v : Level} { G : Graph {v} } {a b c : Graph.vertex G } (f : Chain G b c ) → (g : Chain G a b) → Chain G a c + _・_ : {v v' : Level} { G : Graph {v} {v'} } {a b c : Graph.vertex G } (f : Chain G b c ) → (g : Chain G a b) → Chain G a c id _ ・ f = f (next x f) ・ g = next x ( f ・ g ) - GraphtoCat : {v : Level} (G : Graph {v} ) → Category v v v + GraphtoCat : {v v' : Level} (G : Graph {v} {v'} ) → Category v (v ⊔ v') (v ⊔ v') GraphtoCat G = record { Obj = Graph.vertex G ; Hom = λ a b → Chain G a b ;