Mercurial > hg > Members > kono > Proof > category
changeset 209:4e138cc953f3
equalizer difinition
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Sep 2013 21:59:37 +0900 |
parents | a1e5d2a3d3bd |
children | 51c57efe89b9 |
files | equalizer.agda |
diffstat | 1 files changed, 25 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Mon Sep 02 17:13:14 2013 +0900 +++ b/equalizer.agda Mon Sep 02 21:59:37 2013 +0900 @@ -21,33 +21,39 @@ open import HomReasoning open import cat-utility -record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where +record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field - equalizer : {c d : Obj A} (e : Hom A c a) (h : Hom A d a) → Hom A d c - equalize : {c d : Obj A} (e : Hom A c a) (h : Hom A d a) → - A [ A [ A [ f o e ] o equalizer e h ] ≈ A [ g o h ] ] - uniqueness : {c d : Obj A} (e : Hom A c a) (h : Hom A d a) ( k : Hom A d c ) → - A [ A [ A [ f o e ] o k ] ≈ A [ g o h ] ] → A [ equalizer e h ≈ k ] + e : Hom A c a + ef=eg : A [ A [ f o e ] ≈ A [ g o e ] ] + k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c + ke=h : {d : Obj A} → ∀ {h : Hom A d a} → (eq : A [ A [ f o h ] ≈ A [ g o h ] ] ) → A [ A [ e o k {d} h eq ] ≈ h ] + uniqueness : {d : Obj A} → ∀ {h : Hom A d a} → (eq : A [ A [ f o h ] ≈ A [ g o h ] ] ) → {k' : Hom A d c } → A [ A [ e o k' ] ≈ h ] → + A [ k {d} h eq ≈ k' ] + equalizer : Hom A c a + equalizer = e -record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where +record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field - α : {e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → Hom A e a - γ : {c d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e - δ : {e a b : Obj A} → (f : Hom A a b) → Hom A a e - b1 : {e : Obj A} → A [ A [ f o α {e} f g ] ≈ A [ g o α {e} f g ] ] - b2 : {c d : Obj A } → {h : Hom A d a } → A [ A [ α {c} f g o γ {c} f g h ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] - b3 : {e : Obj A} → A [ A [ α {e} f f o δ {e} f ] ≈ id1 A a ] + α : {e a : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → Hom A e a + γ : {d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e + δ : {a b : Obj A} → (f : Hom A a b) → Hom A a c + b1 : {e : Obj A } → A [ A [ f o α {e} {a} f g ] ≈ A [ g o α {e} {a} f g ] ] + b2 : {e d : Obj A } → {h : Hom A d a } → A [ A [ α {e} f g o γ f g h ] ≈ A [ h o α {c} (A [ f o h ]) (A [ g o h ]) ] ] + b3 : {e : Obj A} → A [ A [ α f f o δ f ] ≈ id1 A a ] -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] - b4 : {c d : Obj A } {k : Hom A c a} → A [ A [ γ f g ( A [ α f g o k ] ) o δ {c} (A [ f o A [ α f g o k ] ] ) ] ≈ k ] + b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ k ] -- A [ α f g o β f g h ] ≈ h β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] -lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) → Equalizer A f g → EqEqualizer A f g -lemma-equ1 A {a} {b} f g eqa = record { - α = {!!} ; - γ = {!!} ; - δ = {!!} ; +open Equalizer +open EqEqualizer + +lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b c : Obj A} (f g : Hom A a b) → Equalizer A {c} f g → EqEqualizer A {c} f g +lemma-equ1 A {a} {b} {c} f g eqa = record { + α = λ {e'} {a} f g → ? ; -- e' -> c c -> a, Hom A e' a + γ = λ {d} {e} {a} {b} f g h → {!!} ; -- Hom A c e + δ = λ {a} {b} f → {!!} ; -- Hom A a c b1 = {!!} ; b2 = {!!} ; b3 = {!!} ;