Mercurial > hg > Members > kono > Proof > category
changeset 812:4ff300e1e98c
graph to CCC done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 27 Apr 2019 08:42:36 +0900 |
parents | 2de0358ea10a |
children | 9b8ee2ddd92d |
files | CCChom.agda discrete.agda |
diffstat | 2 files changed, 58 insertions(+), 57 deletions(-) [+] |
line wrap: on
line diff
--- a/CCChom.agda Sat Apr 27 07:09:35 2019 +0900 +++ b/CCChom.agda Sat Apr 27 08:42:36 2019 +0900 @@ -594,18 +594,18 @@ open Graph - data Objs {G : Graph } : Set where - atom : (vertex G) → Objs - ⊤ : Objs - _∧_ : Objs {G} → Objs {G} → Objs - _<=_ : Objs {G} → Objs {G} → Objs + data Objs (G : Graph ) : Set where + atom : (vertex G) → Objs G + ⊤ : Objs G + _∧_ : Objs G → Objs G → Objs G + _<=_ : Objs G → Objs G → Objs G - data Arrow {G : Graph } : Objs {G} → Objs {G} → Set where - arrow : {a b : vertex G} → (edge G) a b → Arrow (atom a) (atom b) - ○ : (a : Objs ) → Arrow a ⊤ - π : {a b : Objs } → Arrow ( a ∧ b ) a - π' : {a b : Objs } → Arrow ( a ∧ b ) b - ε : {a b : Objs } → Arrow ((a <= b) ∧ b ) a + data Arrow (G : Graph ) : Objs G → Objs G → Set where + arrow : {a b : vertex G} → (edge G) a b → Arrow G (atom a) (atom b) + ○ : (a : Objs G ) → Arrow G a ⊤ + π : {a b : Objs G } → Arrow G ( a ∧ b ) a + π' : {a b : Objs G } → Arrow G ( a ∧ b ) b + ε : {a b : Objs G } → Arrow G ((a <= b) ∧ b ) a -- <_,_> : {a b c : Objs } → Arrow c a → Arrow c b → Arrow c (a ∧ b) -- _* : {a b c : Objs } → Arrow (c ∧ b ) a → Arrow c ( a <= b ) @@ -619,25 +619,27 @@ -- positive intutionistic calculus PL : (G : SM) → Graph - PL G = record { vertex = Objs {graph G} ; edge = Arrow {graph G}} + PL G = record { vertex = Objs (graph G) ; edge = Arrow (graph G) } DX : (G : SM) → Category Level.zero Level.zero Level.zero DX G = GraphtoCat (PL G) -- open import Category.Sets -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ - fobj : {G : SM} ( a : Obj (DX G) ) → Set + fobj : {G : SM} ( a : Objs (graph G) ) → Set fobj {G} (atom x) = sobj G x fobj {G} (a ∧ b) = (fobj {G} a ) /\ (fobj {G} b ) fobj {G} (a <= b) = fobj {G} b → fobj {G} a fobj ⊤ = One' - fmap : {G : SM} { a b : Obj (DX G) } → Hom (DX G) a b → fobj {G} a → fobj {G} b + amap : {G : SM} { a b : Objs (graph G) } → Arrow (graph G) a b → fobj {G} a → fobj {G} b + amap {G} {.(atom _)} {.(atom _)} (arrow x) = smap G x + amap {G} {a} {.⊤} (○ a) _ = OneObj' + amap {G} {.(b ∧ _)} {b} π ( x , _) = x + amap {G} {.(_ ∧ b)} {b} π'( _ , x) = x + amap {G} {.((b <= _) ∧ _)} {b} ε ( f , x ) = f x + fmap : {G : SM} { a b : Objs (graph G) } → Hom (DX G) a b → fobj {G} a → fobj {G} b fmap {G} {a} {a} (id a) = λ z → z - fmap {G} {a} {(atom b)} (next {a} {c} (arrow x) f) = λ (z : fobj a) → smap G x ( fmap f z ) - fmap {G} {a} {⊤} (next (○ b) f) = λ _ → OneObj' - fmap {G} {a} {b} (next {a} {.b ∧ y} {b} π f) = λ z → proj₁ ( fmap {G} {a} {b ∧ y} f z ) - fmap {G} {a} {b} (next {.a} {x ∧ .b} {.b} π' f) = λ z → proj₂ ( fmap f z ) where - fmap {G} {a} {b} (next {.a} {(x <= y) ∧ y} {.b} ε f) = λ z → ( proj₁ (fmap f z))( proj₂ (fmap f z)) + fmap {G} {a} {b} (next x f ) = Sets [ amap {G} x o fmap f ] CS : (G : SM ) → Functor (DX G) (Sets {Level.zero}) FObj (CS G) a = fobj a @@ -646,12 +648,45 @@ _++_ = Category._o_ (DX G) ++idR = IsCategory.identityR ( Category.isCategory ( DX G ) ) distr : {a b c : Obj (DX G)} { f : Hom (DX G) a b } { g : Hom (DX G) b c } → (z : fobj {G} a ) → fmap (g ++ f) z ≡ fmap g (fmap f z) + distr {a} {b} {c} {f} {next {.b} {.c ∧ x} {.c} π g} z = begin + fmap (DX G [ next π g o f ]) z + ≡⟨⟩ + fmap {G} {a} {c} (next {PL G} {a} {c ∧ x} {c} π ( g ++ f)) z + ≡⟨⟩ + proj₁ ( fmap {G} {a} {c ∧ x} (g ++ f ) z ) + ≡⟨ cong ( λ k → proj₁ k ) ( distr {a} {b} {(c ∧ x)} {f} {g} z ) ⟩ + proj₁ ( fmap g ( fmap f z )) + ≡⟨⟩ + (Sets [ fmap (next π g) o fmap f ]) z + ∎ where open ≡-Reasoning + distr {a} {b} {c} {f} {next {b} {x ∧ c} π' g} z = begin + fmap (DX G [ next π' g o f ]) z + ≡⟨⟩ + fmap (next π' (g ++ f)) z + ≡⟨⟩ + proj₂ (fmap (g ++ f) z) + ≡⟨ cong ( λ k → proj₂ k ) ( distr {a} {b} {x ∧ c} {f} {g} z ) ⟩ + ( Sets [ fmap (next π' g) o fmap f ] ) z + ∎ where open ≡-Reasoning + distr {a} {b} {c} {f} {next {b} {(c <= x) ∧ x} {c} ε g} z = begin + fmap (DX G [ next ε g o f ] ) z + ≡⟨⟩ + fmap (next ε (g ++ f)) z + ≡⟨⟩ + proj₁ (fmap (g ++ f) z) ( proj₂ (fmap (g ++ f) z) ) + ≡⟨ cong ( λ k → proj₁ k ( proj₂ k)) (distr {a} {b} {(c <= x) ∧ x} {f} {g} z) ⟩ + proj₁ (fmap g (fmap f z)) ( proj₂ (fmap g (fmap f z))) + ≡⟨⟩ + fmap (next ε g) (fmap f z) + ≡⟨⟩ + ( Sets [ fmap (next ε g) o fmap f ] ) z + ∎ where open ≡-Reasoning distr {a} {.a} {.a} {id a} {id .a} z = refl - distr {a} {.a} {c} {id a} {next x g} z = begin + distr {a} {.a} {c} {id a} {next {a} {b} x g} z = begin fmap (DX G [ next x g o Chain.id a ]) z ≡⟨⟩ fmap ( next x ( g ++ (Chain.id a))) z - ≡⟨ cong ( λ k → fmap ( next x k ) z ) ++idR ⟩ + ≡⟨ cong ( λ k → fmap ( next x k ) z ) ( ++idR {a} {b} {g} ) ⟩ fmap ( next x g ) z ≡⟨ refl ⟩ ( Sets [ fmap (next x g) o fmap (Chain.id a) ] ) z @@ -675,46 +710,13 @@ ≡⟨⟩ (Sets [ fmap (next (○ a₁) g) o fmap f ]) z ∎ where open ≡-Reasoning - distr {a} {b} {c} {f} {next {.b} {.c ∧ x} {.c} π g} z = begin - fmap (DX G [ next π g o f ]) z - ≡⟨⟩ - fmap {G} {a} {c} (next {PL G} {a} {c ∧ x} {c} π ( g ++ f)) z - ≡⟨ {!!} ⟩ - proj₁ ( fmap {G} {a} {c ∧ x} (g ++ f ) z ) - ≡⟨ cong ( λ k → proj₁ k ) ( distr {a} {b} {(c ∧ x)} {f} {g} z ) ⟩ - proj₁ ( fmap g ( fmap f z )) - ≡⟨ {!!} ⟩ - (Sets [ fmap (next π g) o fmap f ]) z - ∎ where open ≡-Reasoning - distr {a} {b} {c} {f} {next π' g} z = begin - fmap (DX G [ next π' g o f ]) z - ≡⟨⟩ - fmap (next π' (g ++ f)) z - ≡⟨ {!!} ⟩ - proj₂ (fmap (g ++ f) z) - ≡⟨ {!!} ⟩ - ( Sets [ fmap (next π' g) o fmap f ] ) z - ∎ where open ≡-Reasoning - distr {a} {b} {c} {f} {next {b} {(c <= x) ∧ x} {c} ε g} z = begin - fmap (DX G [ next ε g o f ] ) z - ≡⟨⟩ - fmap (next ε (g ++ f)) z - ≡⟨ {!!} ⟩ - proj₁ (fmap (g ++ f) z) ( proj₂ (fmap (g ++ f) z) ) - ≡⟨ cong ( λ k → proj₁ k ( proj₂ k)) (distr {a} {b} {(c <= x) ∧ x} {f} {g} z) ⟩ - proj₁ (fmap g (fmap f z)) ( proj₂ (fmap g (fmap f z))) - ≡⟨ {!!} ⟩ - fmap (next ε g) (fmap f z) - ≡⟨⟩ - ( Sets [ fmap (next ε g) o fmap f ] ) z - ∎ where open ≡-Reasoning isf : IsFunctor (DX G) Sets fobj fmap IsFunctor.identity isf = extensionality Sets ( λ x → refl ) IsFunctor.≈-cong isf refl = refl IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z ) - <_,_> : { G : SM } → {a b c : Objs {graph G}} → Arrow c a → Arrow c b → Hom Sets (FObj (CS G) c ) (FObj (CS G) (a ∧ b) ) + <_,_> : { G : SM } → {a b c : Objs (graph G)} → Arrow (graph G) c a → Arrow (graph G) c b → Hom Sets (FObj (CS G) c ) (FObj (CS G) (a ∧ b) ) <_,_> {G} {a} {b} {c} f g = λ z → ( (FMap (CS G) ( next f (id c))) z , FMap (CS G) (next g (id c)) z ) - _* : { G : SM } → {a b c : Objs {graph G}} → Arrow (c ∧ b ) a → Hom Sets (FObj (CS G) c) (FObj (CS G) ( a <= b )) + _* : { G : SM } → {a b c : Objs (graph G)} → Arrow (graph G) (c ∧ b ) a → Hom Sets (FObj (CS G) c) (FObj (CS G) ( a <= b )) _* {G} {a} {b} {c} f = λ z y → FMap (CS G) ( next f (id (c ∧ b) ) ) ( z , y )
--- a/discrete.agda Sat Apr 27 07:09:35 2019 +0900 +++ b/discrete.agda Sat Apr 27 08:42:36 2019 +0900 @@ -22,7 +22,6 @@ _・_ : { G : Graph} {a b c : Graph.vertex G } (f : Chain {G} b c ) → (g : Chain {G} a b) → Chain {G} a c id _ ・ f = f (next x f) ・ g = next x ( f ・ g ) - -- _・_ {G} {a} {b} {c} (next {b} {d} {c} x f) g = next {G} {a} {d} {c} x ( f ・ g ) GraphtoCat : (G : Graph ) → Category Level.zero Level.zero Level.zero GraphtoCat G = record {