changeset 297:537570f6a44f

limit preservation proved.
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 25 Sep 2013 21:12:29 +0900
parents bba60d843462
children 61669ac03e7d
files pullback.agda
diffstat 1 files changed, 21 insertions(+), 3 deletions(-) [+]
line wrap: on
line diff
--- a/pullback.agda	Wed Sep 25 21:03:15 2013 +0900
+++ b/pullback.agda	Wed Sep 25 21:12:29 2013 +0900
@@ -547,13 +547,31 @@
                  FMap U (limit limitb (FObj F a) (tF a t )) o TMap η a  
                ≈⟨ car ( fcong U (limit-uniqueness limitb ( λ {i} →  lemma1 i) )) ⟩
                  FMap U ( B [ TMap ε lim o FMap F f ] ) o TMap η a  
-               ≈⟨ {!!} ⟩
-                 f
+               ≈⟨ car (distr U ) ⟩
+                 ( (FMap U (TMap ε lim))  o (FMap U ( FMap F f )) ) o TMap η a
+               ≈⟨ sym assoc ⟩
+                  (FMap U (TMap ε lim))  o ((FMap U ( FMap F f ))  o TMap η a )
+               ≈⟨ cdr (nat η) ⟩
+                  (FMap U (TMap ε lim))  o ((TMap η (FObj U lim )) o f )
+               ≈⟨ assoc ⟩
+                  ((FMap U (TMap ε lim))  o (TMap η (FObj U lim)))  o f
+               ≈⟨ car ( IsAdjunction.adjoint1 ( Adjunction.isAdjunction adj))  ⟩
+                  id (FObj U lim) o f
+               ≈⟨  idL  ⟩
+                  f
                ∎ where
                   lemma1 : (i : Obj I) → B [ B [ TMap tb i o B [ TMap ε lim  o FMap F f ] ] ≈ TMap (tF a t) i ]
                   lemma1 i =  let  open ≈-Reasoning (B) in  begin
                           TMap tb i o (TMap ε lim  o FMap F f)
-                       ≈⟨ {!!} ⟩
+                       ≈⟨ assoc ⟩
+                          ( TMap tb i o TMap ε lim  ) o FMap F f
+                       ≈⟨ car ( nat ε ) ⟩
+                          ( TMap ε (FObj Γ i) o  FMap F ( FMap U ( TMap tb i )))  o FMap F f 
+                       ≈↑⟨ assoc  ⟩
+                          TMap ε (FObj Γ i) o  ( FMap F ( FMap U ( TMap tb i ))  o FMap F f )
+                       ≈↑⟨ cdr ( distr F )  ⟩
+                          TMap ε (FObj Γ i) o  FMap F ( A [ FMap U ( TMap tb i )  o f ] ) 
+                       ≈⟨ cdr ( fcong F (lim=t {i}) ) ⟩
                           TMap ε (FObj Γ i) o FMap F (TMap t i) 
                        ≈⟨⟩
                           TMap (tF a t) i