Mercurial > hg > Members > kono > Proof > category
changeset 298:61669ac03e7d
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 25 Sep 2013 21:39:40 +0900 |
parents | 537570f6a44f |
children | 8c72f5284bc8 |
files | pullback.agda |
diffstat | 1 files changed, 8 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Wed Sep 25 21:12:29 2013 +0900 +++ b/pullback.agda Wed Sep 25 21:39:40 2013 +0900 @@ -237,6 +237,12 @@ --------- -- +-- Limit Constancy Functor F : A → A^I has right adjoint +-- +-- we are going to prove universal mapping + +--------- +-- -- limit gives co universal mapping ( i.e. adjunction ) -- -- F = KI I : Functor A (A ^ I) @@ -320,6 +326,7 @@ product : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → Hom A q p pif=q : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ∀ { i : I } → A [ A [ ( pi i ) o ( product qi ) ] ≈ (qi i) ] -- special case of product ( qi = pi ) ( should b proved from pif=q ) + -- we cannot prove this because qi/pi cannot be interleaved , should be the way to prove pif=q1 : { i : I } → { qi : Hom A p (ai i) } → A [ pi i ≈ qi ] ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ product ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ] ip-cong : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } @@ -546,7 +553,7 @@ ≈⟨⟩ FMap U (limit limitb (FObj F a) (tF a t )) o TMap η a ≈⟨ car ( fcong U (limit-uniqueness limitb ( λ {i} → lemma1 i) )) ⟩ - FMap U ( B [ TMap ε lim o FMap F f ] ) o TMap η a + FMap U ( B [ TMap ε lim o FMap F f ] ) o TMap η a -- Universal mapping ≈⟨ car (distr U ) ⟩ ( (FMap U (TMap ε lim)) o (FMap U ( FMap F f )) ) o TMap η a ≈⟨ sym assoc ⟩