Mercurial > hg > Members > kono > Proof > category
changeset 486:56cf6581c5f6
add some lemma but no use
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 12 Mar 2017 14:48:14 +0900 |
parents | da4486523f73 |
children | c257347a27f3 |
files | freyd1.agda |
diffstat | 1 files changed, 46 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd1.agda Sat Mar 11 18:58:21 2017 +0900 +++ b/freyd1.agda Sun Mar 12 14:48:14 2017 +0900 @@ -98,10 +98,6 @@ ; ≈-cong = IsFunctor.≈-cong ( isFunctor Γ ) }} where -revF : { I : Category c₁ c₂ ℓ } → ( Γ : Functor I A ) → Functor I CommaCategory -revF = {!!} - - NIC : { I : Category c₁ c₂ ℓ } → ( Γ : Functor I CommaCategory ) (c : Obj CommaCategory ) ( ta : NTrans I A ( K A I (obj c) ) (FIA Γ) ) → NTrans I C ( K C I (FObj G (obj c)) ) (G ○ ( FIA Γ) ) NIC {I} Γ c ta = tb A I (FIA Γ) (obj c) ta G @@ -120,6 +116,43 @@ → Limit C I ( G ○ (FIA (revΓ Γ) )) revLimitC {I} comp glimit Γ = glimit (FIA (revΓ Γ)) (isLimit comp (FIA (revΓ Γ ))) + +a0F : ( I : Category c₁ c₂ ℓ ) → (a1 : Obj A) → Functor I A +a0F I a1 = record { + FObj = λ x → a1 + ; FMap = λ {a} {b} f → id1 A a1 + ; isFunctor = record { + identity = let open ≈-Reasoning (A) in refl-hom + ; distr = let open ≈-Reasoning (A) in ( sym idL ) + ; ≈-cong = λ _ → let open ≈-Reasoning (A) in refl-hom + }} where + +t0F : ( I : Category c₁ c₂ ℓ ) → (a1 : Obj A ) + → NTrans I A (K A I a1 ) (a0F I a1 ) +t0F I a1 = record { + TMap = λ i → id1 A a1 + ; isNTrans = record { commute = λ {a b f} → commute {a} {b} {f} } + } where + commute : {a b : Obj I} {f : Hom I a b} → A [ + A [ FMap (a0F I a1 ) f o id1 A a1 ] ≈ + A [ id1 A a1 o FMap (K A I a1) f ] ] + commute {a} {b} {f} = let open ≈-Reasoning (A) in begin + FMap (a0F I a1 ) f o id1 A a1 + ≈⟨ idR ⟩ + FMap (a0F I a1 ) f + ≈⟨⟩ + id1 A a1 + ≈⟨⟩ + FMap (K A I a1) f + ≈↑⟨ idL ⟩ + id1 A a1 o FMap (K A I a1) f + ∎ + +hoge : ( a : Obj A ) → ( I : Category c₁ c₂ ℓ ) → (comp : Complete A I ) → ∀ { i : Obj I } → + A [ A [ TMap ( limit-u comp (a0F I a)) i o limit (isLimit comp (a0F I a)) a (t0F I a) ] ≈ id1 A a ] +hoge a I comp {i} = t0f=t (isLimit comp (a0F I a)) + + commaLimit : { I : Category c₁ c₂ ℓ } → ( Complete A I) → ( Γ : Functor I CommaCategory ) → ( glimit : ( Γ : Functor I A ) → ( limita : Limit A I Γ ) → Limit C I (G ○ Γ) ) → Obj CommaCategory @@ -127,13 +160,20 @@ obj = limit-c comp (FIA Γ) ; hom = limitHom } where + frev : {i : Obj I } → Hom A (limit-c comp (FIA Γ)) (obj (FObj Γ i)) + frev {i} = TMap (t0 ( isLimit comp (FIA Γ))) i tu : NTrans I C (K C I (FObj F (limit-c comp (FIA Γ)))) (FICG Γ) tu = record { - TMap = λ i → C [ hom ( FObj Γ i ) o FMap F {!!} ] + TMap = λ i → C [ hom ( FObj Γ i ) o FMap F frev ] ; isNTrans = {!!} } + forward : Hom C (FObj G (limit-c comp (FIA Γ))) (a0 (LimitC comp glimit Γ)) + forward = limit (LimitC comp glimit Γ) (FObj G (limit-c comp (FIA Γ))) + ( record { TMap = λ i → C [ FMap G frev o {!!} ] ; isNTrans = {!!} } ) + rev : Hom C (a0 (LimitC comp glimit Γ)) (FObj G (limit-c comp (FIA Γ))) + rev = C [ FMap G {!!} o TMap (t0 (LimitC comp glimit Γ)) {!!} ] limitHom : Hom C (FObj F (limit-c comp (FIA Γ ) )) (FObj G (limit-c comp (FIA Γ) )) - limitHom = C [ {!!} o limit (revLimitC comp glimit Γ) (FObj F (limit-c comp (FIA (revΓ Γ)))) tu ] + limitHom = C [ rev o limit (LimitC comp glimit Γ) (FObj F (limit-c comp (FIA Γ))) tu ] commaNat : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I) → ( Γ : Functor I CommaCategory )