Mercurial > hg > Members > kono > Proof > category
changeset 974:5731ffd6cf7a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 01 Mar 2021 11:26:28 +0900 |
parents | 5f76e5cf3d49 |
children | f8fba4f1dcfa |
files | src/CCC.agda src/ToposEx.agda |
diffstat | 2 files changed, 20 insertions(+), 58 deletions(-) [+] |
line wrap: on
line diff
--- a/src/CCC.agda Sun Feb 28 17:31:13 2021 +0900 +++ b/src/CCC.agda Mon Mar 01 11:26:28 2021 +0900 @@ -169,8 +169,8 @@ (Ker : {a : Obj A} → ( h : Hom A a Ω ) → Equalizer A h (A [ ⊤ o (○ a) ])) (char : {a b : Obj A} → (m : Hom A b a) → Mono A m → Hom A a Ω) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where field - char-ker : {a b : Obj A } (m : Hom A b a ) → ( mono : Mono A m ) → {h : Hom A a Ω} - → A [ char m mono ≈ h ] + char-ker : {a b : Obj A } {h : Hom A a Ω} + → A [ char (equalizer (Ker h)) record { isMono = λ f g → monic (Ker h) } ≈ h ] ker-char : {a b : Obj A} → (m : Hom A b a) → (mono : Mono A m) → Iso A b ( equalizer-c (Ker ( char m mono ))) record Topos {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( 1 : Obj A) (○ : (a : Obj A ) → Hom A a 1) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where @@ -206,8 +206,3 @@ gNat : (nat : NatD A 1 ) → Hom A (Nat TNat) (Nat nat) isToposN : IsToposNat A 1 TNat gNat - - - - -
--- a/src/ToposEx.agda Sun Feb 28 17:31:13 2021 +0900 +++ b/src/ToposEx.agda Mon Mar 01 11:26:28 2021 +0900 @@ -1,12 +1,15 @@ -module ToposEx where open import CCC open import Level open import Category open import cat-utility open import HomReasoning +module ToposEx {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (c : CCC A) (t : Topos A (CCC.1 c) (CCC.○ c) ) where -open Topos -open Equalizer + open Topos + open Equalizer + open ≈-Reasoning A + open CCC.CCC c + -- ○ b -- b -----------→ 1 @@ -18,10 +21,8 @@ -- -- Ker t h : Equalizer A h (A [ ⊤ o (○ a) ]) -topos-pullback : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( 1 : Obj A) (○ : (a : Obj A ) → Hom A a 1) - → (e2 : {a : Obj A} → ∀ { f : Hom A a 1 } → A [ f ≈ ○ a ] ) - → (t : Topos A 1 ○ ) → {a : Obj A} → (h : Hom A a (Ω t)) → Pullback A h (⊤ t) -topos-pullback A 1 ○ e2 t {a} h = record { + topos-pullback : {a : Obj A} → (h : Hom A a (Ω t)) → Pullback A h (⊤ t) + topos-pullback {a} h = record { ab = equalizer-c (Ker t h) -- b ; π1 = equalizer (Ker t h) -- m ; π2 = ○ ( equalizer-c (Ker t h) ) -- ○ b @@ -32,13 +33,13 @@ ; π2p=π2 = λ {d} {p1'} {p2'} {eq} → lemma2 eq ; uniqueness = uniq } - } where - open ≈-Reasoning A + } where + e2 = IsCCC.e2 isCCC comm : A [ A [ h o equalizer (Ker t h) ] ≈ A [ ⊤ t o ○ (equalizer-c (Ker t h)) ] ] comm = begin h o equalizer (Ker t h) ≈⟨ IsEqualizer.fe=ge (isEqualizer (Ker t h)) ⟩ (⊤ t o ○ a ) o equalizer (Ker t h) ≈↑⟨ assoc ⟩ - ⊤ t o (○ a o equalizer (Ker t h)) ≈⟨ cdr e2 ⟩ + ⊤ t o (○ a o equalizer (Ker t h)) ≈⟨ cdr e2 ⟩ ⊤ t o ○ (equalizer-c (Ker t h)) ∎ lemma1 : {d : Obj A} (p1 : Hom A d a) (p2 : Hom A d 1) (eq : A [ A [ h o p1 ] ≈ A [ ⊤ t o p2 ] ] ) → A [ A [ h o p1 ] ≈ A [ A [ ⊤ t o ○ a ] o p1 ] ] @@ -61,30 +62,8 @@ IsEqualizer.k (isEqualizer (Ker t h)) p1' (lemma1 p1' p2' eq) ≈⟨ IsEqualizer.uniqueness (isEqualizer (Ker t h)) pe1 ⟩ p' ∎ -topos-m-pullback : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( 1 : Obj A) (○ : (a : Obj A ) → Hom A a 1) - → (e2 : {a : Obj A} → ∀ { f : Hom A a 1 } → A [ f ≈ ○ a ] ) - → (t : Topos A 1 ○ ) → {a b : Obj A} → (m : Hom A b a) → (mono : Mono A m ) → Pullback A (char t m mono ) (⊤ t) -topos-m-pullback A 1 ○ e2 t {a} {b} m mono = topos-pullback A 1 ○ e2 t {a} (char t m mono) - ---- ---- ---- - --- SubObjectFunctor : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) → ( 1 : Obj A) (○ : (a : Obj A ) → Hom A a 1) --- → (e2 : {a : Obj A} → ∀ { f : Hom A a 1 } → A [ f ≈ ○ a ] ) → (t : Topos A 1 ○ ) → Functor A A --- SubObjectFunctor A 1 ○ e2 t = record { --- FObj = λ x → Ω t --- ; FMap = {!!} --- ; isFunctor = record { --- identity = {!!} --- ; distr = {!!} --- ; ≈-cong = {!!} --- } --- } - -module _ {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (c : CCC A) (t : Topos A (CCC.1 c) (CCC.○ c) ) where - open ≈-Reasoning A - open CCC.CCC c + topos-m-pullback : {a b : Obj A} → (m : Hom A b a) → (mono : Mono A m ) → Pullback A (char t m mono ) (⊤ t) + topos-m-pullback {a} {b} m mono = topos-pullback {a} (char t m mono) δmono : {b : Obj A } → Mono A < id1 A b , id1 A b > δmono = record { @@ -101,8 +80,8 @@ id1 A _ o g ≈⟨ idL ⟩ g ∎ - open Equalizer - open import equalizer + ip : {b : Obj A } → Pullback A (char t < id1 A b , id1 A b > δmono ) (⊤ t) + ip {b} = topos-m-pullback < id1 A b , id1 A b > δmono prop32→ : {a b : Obj A}→ (f g : Hom A a b ) → A [ f ≈ g ] → A [ A [ char t < id1 A b , id1 A b > δmono o < f , g > ] ≈ A [ ⊤ t o ○ a ] ] @@ -111,24 +90,12 @@ char t < id1 A b , id1 A b > δmono o < f , f > ≈↑⟨ cdr ( IsCCC.π-cong isCCC idL idL ) ⟩ char t < id1 A b , id1 A b > δmono o < id1 A _ o f , id1 A _ o f > ≈↑⟨ cdr ( IsCCC.distr-π isCCC ) ⟩ char t < id1 A b , id1 A b > δmono o (< id1 A _ , id1 A _ > o f) ≈⟨ assoc ⟩ - (char t < id1 A b , id1 A b > δmono o < id1 A _ , id1 A _ > ) o f ≈⟨ car lem1 ⟩ + (char t < id1 A b , id1 A b > δmono o Pullback.π1 pb ) o f ≈⟨ car (IsPullback.commute (Pullback.isPullback pb)) ⟩ (⊤ t o ○ b) o f ≈↑⟨ assoc ⟩ ⊤ t o (○ b o f) ≈⟨ cdr (IsCCC.e2 isCCC) ⟩ ⊤ t o ○ a ∎ where - i = char t < id1 A b , id1 A b > δmono o < id1 A _ , id1 A _ > - e = Ker t ( ⊤ t o ○ b) - ki = IsEqualizer.k (isEqualizer e) (id1 A _) refl-hom - lem1 : (char t < id1 A b , id1 A b > δmono o < id1 A _ , id1 A _ > ) ≈ ( ⊤ t o ○ b ) - lem1 = begin - i ≈↑⟨ idR ⟩ - i o id1 A _ ≈↑⟨ cdr (IsEqualizer.ek=h (isEqualizer e) ) ⟩ - i o (equalizer e o ki ) ≈⟨ assoc ⟩ - (i o equalizer e ) o ki ≈⟨ {!!} ⟩ - (((⊤ t) o (○ b)) o equalizer e ) o ki ≈⟨ car (IsEqualizer.fe=ge (isEqualizer e)) ⟩ - ((⊤ t o ○ b) o equalizer e ) o ki ≈↑⟨ assoc ⟩ - (⊤ t o ○ b) o (equalizer e o ki ) ≈⟨ cdr (IsEqualizer.ek=h (isEqualizer e) )⟩ - (⊤ t o ○ b) o id1 A _ ≈⟨ idR ⟩ - ⊤ t o ○ b ∎ + pb : Pullback A (char t < id1 A b , id1 A b > δmono) (⊤ t ) + pb = {!!} prop23→ : {a b : Obj A}→ (f g : Hom A a b )