Mercurial > hg > Members > kono > Proof > category
changeset 1078:5aa36440e6fe
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 11 May 2021 22:59:27 +0900 (2021-05-11) |
parents | 918319d070b0 |
children | d07cfce03236 |
files | src/Polynominal.agda |
diffstat | 1 files changed, 27 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Polynominal.agda Mon May 10 16:24:03 2021 +0900 +++ b/src/Polynominal.agda Tue May 11 22:59:27 2021 +0900 @@ -73,9 +73,30 @@ -- case i i is π ∙ f ≈ π ∙ g -- we have (x y : Hom A 1 a) → x ≡ y (minimul equivalende assumption). this makes all k x ii case valid -- all other cases, arguments are reduced to f ∙ π' . - postulate + --postulate -- x-singleon : {a b c : Obj A} → (f : Poly a c b ) → (x y : Hom A b a) → x ≡ y -- minimul equivalende assumption (variables are the same except its name) - k-cong : {a b c : Obj A} → (f g : Poly a c b ) → A [ Poly.f f ≈ Poly.f g ] → A [ k (Poly.x f) (Poly.phi f) ≈ k (Poly.x g) (Poly.phi g) ] + k-cong : {a b c : Obj A} → (f g : Poly a c b ) + → Poly.x f ≡ Poly.x g + → A [ Poly.f f ≈ Poly.f g ] → A [ k (Poly.x f) (Poly.phi f) ≈ k (Poly.x g) (Poly.phi g) ] + k-cong {a} {b} {c} f g refl f=f with Poly.x f | (Poly.phi f) | (Poly.phi g) + ... | x | i {_} {_} {f'} | i = resp refl-hom f=f + ... | x | i {_} {_} {f'} | ii = {!!} + ... | x | i {_} {_} {h} | iii {_} {_} {_} {f₁} {g₁} t t₁ = begin + k x {h} i ≈⟨⟩ + h ∙ π' ≈⟨ car f=f ⟩ + < f₁ , g₁ > ∙ π' ≈⟨ IsCCC.distr-π isCCC ⟩ + < f₁ ∙ π' , g₁ ∙ π' > ≈⟨⟩ + < k x {f₁} i , k x {g₁} i > ≈⟨ IsCCC.π-cong isCCC (k-cong _ _ refl {!!} ) {!!} ⟩ + < k x t , k x t₁ > ≈⟨⟩ + k x (iii t t₁) ∎ + ... | x | i {_} {_} {f'} | iv t t₁ = {!!} + ... | x | i {_} {_} {f'} | v t = {!!} + ... | x | i {_} {_} {f'} | φ-cong x₁ t = {!!} + ... | _ | ii | t = {!!} + ... | x | iii s s₁ | t = {!!} + ... | x | iv s s₁ | t = {!!} + ... | x | v s | t = {!!} + ... | x | φ-cong x₁ s | t = {!!} -- we may prove k-cong from x-singleon -- k-cong' : {a b c : Obj A} → (f g : Poly a c b ) → A [ Poly.f f ≈ Poly.f g ] → A [ k (Poly.x f) (Poly.phi f) ≈ k (Poly.x g) (Poly.phi g) ] @@ -154,7 +175,7 @@ k x y ∙ ( < (x ∙ ○ d) ∙ g , id1 A d ∙ g > ) ≈↑⟨ cdr (IsCCC.distr-π isCCC) ⟩ k x y ∙ ( < x ∙ ○ d , id1 A d > ∙ g ) ≈⟨ assoc ⟩ (k x y ∙ < x ∙ ○ d , id1 A d > ) ∙ g ≈⟨ car (fc0 x f y ) ⟩ - f ∙ g ∎ + f ∙ g ∎ ... | v {_} {_} {_} {f} y = begin ( (k x y ∙ < π ∙ π , < π' ∙ π , π' > >) *) ∙ < x ∙ (○ b) , id1 A b > ≈⟨ IsCCC.distr-* isCCC ⟩ ( (k x y ∙ < π ∙ π , < π' ∙ π , π' > >) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > ) * ≈⟨ IsCCC.*-cong isCCC ( begin @@ -183,17 +204,17 @@ uniq : {a b c : Obj A} → (x : Hom A 1 a) (f : Hom A b c) (phi : φ x {b} {c} f ) (f' : Hom A (a ∧ b) c) → A [ f' ∙ < x ∙ ○ b , id1 A b > ≈ f ] → A [ f' ≈ k x phi ] uniq {a} {b} {c} x f phi f' fx=p = sym (begin - k x phi ≈⟨ k-cong record {x = x ; f = _ ; phi = phi } record { x = x ; f = _ ; phi = i } (sym fx=p) ⟩ + k x phi ≈↑⟨ k-cong record {x = x ; f = _ ; phi = i } record {x = x ; f = _ ; phi = phi } refl fx=p ⟩ k x {f' ∙ < x ∙ ○ b , id1 A b >} i ≈⟨ trans-hom (sym assoc) (cdr (IsCCC.distr-π isCCC) ) ⟩ -- ( f' ∙ < x ∙ ○ b , id1 A b> ) ∙ π' f' ∙ k x {< x ∙ ○ b , id1 A b >} (iii i i ) -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) - ≈⟨ cdr (π-cong (k-cong record {x = x ; f = _ ; phi = i } record {x = x ; f = _ ; phi = iv ii i } refl-hom ) refl-hom) ⟩ + ≈⟨ cdr (π-cong (k-cong record {x = x ; f = _ ; phi = i } record {x = x ; f = _ ; phi = iv ii i } refl refl-hom ) refl-hom) ⟩ f' ∙ < k x {x ∙ ○ b} (iv ii i ) , k x {id1 A b} i > ≈⟨ refl-hom ⟩ f' ∙ < k x {x} ii ∙ < π , k x {○ b} i > , k x {id1 A b} i > -- ( f' ∙ < π ∙ < π , (x ∙ ○ b) ∙ π' > , id1 A b ∙ π' > ) ≈⟨ cdr (π-cong (cdr (π-cong refl-hom (car e2))) idL ) ⟩ f' ∙ < π ∙ < π , (○ b ∙ π' ) > , π' > ≈⟨ cdr (π-cong (IsCCC.e3a isCCC) refl-hom) ⟩ f' ∙ < π , π' > ≈⟨ cdr (IsCCC.π-id isCCC) ⟩ f' ∙ id1 A _ ≈⟨ idR ⟩ - f' ∎ ) + f' ∎ ) -- functional completeness ε form --