Mercurial > hg > Members > kono > Proof > category
changeset 556:6277ac99db37
give up this approach
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 09 Apr 2017 22:56:26 +0900 |
parents | 91d065bcfdc0 |
children | 9902722e1578 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 3 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Sun Apr 09 21:20:25 2017 +0900 +++ b/SetsCompleteness.agda Sun Apr 09 22:56:26 2017 +0900 @@ -242,14 +242,7 @@ limit1 a t x ≡⟨⟩ record { snmap = λ i → ( TMap t i ) x ; snequ = λ {i} {j} f → elem (TMap t i x) (comm2 t f ) } - ≡⟨ ≡cong2 ( λ x y → record { snmap = λ i → x i ; snequ = λ {i} {j} f → y x i j f } ) - ( extensionality Sets ( λ i → eq1 x i ) ) - ( extensionality Sets ( λ x' → - ( extensionality Sets ( λ i → - ( extensionality Sets ( λ j → - ( extensionality Sets ( λ f' → elm-cong (elem (TMap t i x ) {!!}) ? {!!} - )))))))) - ⟩ + ≡⟨ ? ⟩ record { snmap = λ i → snmap (f x ) i ; snequ = snequ (f x) } ≡⟨⟩ f x @@ -258,5 +251,7 @@ open ≡-Reasoning eq1 : (x : a ) (i : Obj C) → TMap t i x ≡ snmap (f x) i eq1 x i = sym ( ≡cong ( λ f → f x ) cif=t ) + eq2 : ( i j : Obj C ) (x' : Obj C → FObj Γ {!!} ) → (f' : I → I ) → ΓMap s Γ f' (x' i) ≡ x' j + eq2 = {!!}