Mercurial > hg > Members > kono > Proof > category
changeset 555:91d065bcfdc0
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 09 Apr 2017 21:20:25 +0900 |
parents | 9e6aa4d77c3e |
children | 6277ac99db37 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 14 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Sun Apr 09 20:24:42 2017 +0900 +++ b/SetsCompleteness.agda Sun Apr 09 21:20:25 2017 +0900 @@ -109,6 +109,9 @@ irr : { c₂ : Level} {d : Set c₂ } { x y : d } ( eq eq' : x ≡ y ) → eq ≡ eq' irr refl refl = refl +elm-cong : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b} → (x y : sequ a b f g) → equ x ≡ equ y → x ≡ y +elm-cong ( elem x eq ) (elem .x eq' ) refl = ≡cong ( λ ee → elem x ee ) ( irr eq eq' ) + open sequ -- equalizer-c = sequ a b f g @@ -129,8 +132,6 @@ ek=h {d} {h} {eq} = refl injection : { c₂ : Level } {a b : Obj (Sets { c₂})} (f : Hom Sets a b) → Set c₂ injection f = ∀ x y → f x ≡ f y → x ≡ y - elm-cong : (x y : sequ a b f g) → equ x ≡ equ y → x ≡ y - elm-cong ( elem x eq ) (elem .x eq' ) refl = ≡cong ( λ ee → elem x ee ) ( irr eq eq' ) lemma5 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ (k h fh=gh x) ≡ equ (k' x) lemma5 refl x = refl -- somehow this is not equal to lemma1 @@ -216,28 +217,6 @@ ; limit-uniqueness = λ {a t i } → limit-uniqueness {a} {t} {i} } } where - snat-cong : { snat tnat : snat (ΓObj s Γ) (ΓMap s Γ) } - → (( i : Obj C ) → snmap snat i ≡ snmap tnat i ) - → ( ( i j : Obj C ) ( f : I → I ) → ΓMap s Γ f ( snmap snat i ) ≡ snmap snat j ) - → ( ( i j : Obj C ) ( f : I → I ) → ΓMap s Γ f ( snmap tnat i ) ≡ snmap tnat j ) - → snat ≡ tnat - snat-cong {s} {t} eq1 eq2 eq3 = begin - record { snmap = λ i → snmap s i ; snequ = {!!} } - ≡⟨ - ≡cong2 ( λ x y → - record { snmap = λ i → x i ; snequ = {!!} } ) ( extensionality Sets ( λ i → {!!} ) ) - ( extensionality Sets ( λ x → - ( extensionality Sets ( λ i → - ( extensionality Sets ( λ j → - ( extensionality Sets ( λ f → {!!} - )))))))) - ⟩ - record { snmap = {!!} ; snequ = {!!} } - ≡⟨ {!!} ⟩ - record { snmap = λ i → snmap t i ; snequ = {!!} } - ∎ where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning a0 : Obj Sets a0 = snat (ΓObj s Γ) (ΓMap s Γ) comm2 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I → I ) @@ -263,11 +242,21 @@ limit1 a t x ≡⟨⟩ record { snmap = λ i → ( TMap t i ) x ; snequ = λ {i} {j} f → elem (TMap t i x) (comm2 t f ) } - ≡⟨ snat-cong {!!} {!!} {!!} ⟩ + ≡⟨ ≡cong2 ( λ x y → record { snmap = λ i → x i ; snequ = λ {i} {j} f → y x i j f } ) + ( extensionality Sets ( λ i → eq1 x i ) ) + ( extensionality Sets ( λ x' → + ( extensionality Sets ( λ i → + ( extensionality Sets ( λ j → + ( extensionality Sets ( λ f' → elm-cong (elem (TMap t i x ) {!!}) ? {!!} + )))))))) + ⟩ record { snmap = λ i → snmap (f x ) i ; snequ = snequ (f x) } ≡⟨⟩ f x ∎ ) where open import Relation.Binary.PropositionalEquality open ≡-Reasoning + eq1 : (x : a ) (i : Obj C) → TMap t i x ≡ snmap (f x) i + eq1 x i = sym ( ≡cong ( λ f → f x ) cif=t ) +