Mercurial > hg > Members > kono > Proof > category
changeset 578:6b9737d041b4
one yelllow
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 28 Apr 2017 18:50:13 +0900 |
parents | 761df92aa225 |
children | 36d346a3d6fd |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 25 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Thu Apr 27 10:51:29 2017 +0900 +++ b/SetsCompleteness.agda Fri Apr 28 18:50:13 2017 +0900 @@ -47,13 +47,13 @@ prod-cong a b {c} {f} {.f} {g} {.g} refl refl = refl -record iproduct {a} (I : Set a) ( Product : I → Set a ) : Set a where +record sproduct {a} (I : Set a) ( Product : I → Set a ) : Set a where field proj : ( i : I ) → Product i -open iproduct +open sproduct -iproduct1 : { c₂ : Level} → (I : Obj (Sets { c₂}) ) (fi : I → Obj Sets ) {q : Obj Sets} → ((i : I) → Hom Sets q (fi i)) → Hom Sets q (iproduct I fi) +iproduct1 : { c₂ : Level} → (I : Obj (Sets { c₂}) ) (fi : I → Obj Sets ) {q : Obj Sets} → ((i : I) → Hom Sets q (fi i)) → Hom Sets q (sproduct I fi) iproduct1 I fi {q} qi x = record { proj = λ i → (qi i) x } ipcx : { c₂ : Level} → (I : Obj (Sets { c₂})) (fi : I → Obj Sets ) {q : Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → (x : q) → iproduct1 I fi qi x ≡ iproduct1 I fi qi' x ipcx I fi {q} {qi} {qi'} qi=qi x = @@ -71,7 +71,7 @@ → IProduct ( Sets { c₂} ) I SetsIProduct I fi = record { ai = fi - ; iprod = iproduct I fi + ; iprod = sproduct I fi ; pi = λ i prod → proj prod i ; isIProduct = record { iproduct = iproduct1 I fi @@ -82,7 +82,7 @@ } where pif=q : {q : Obj Sets} (qi : (i : I) → Hom Sets q (fi i)) {i : I} → Sets [ Sets [ (λ prod → proj prod i) o iproduct1 I fi qi ] ≈ qi i ] pif=q {q} qi {i} = refl - ip-uniqueness : {q : Obj Sets} {h : Hom Sets q (iproduct I fi)} → Sets [ iproduct1 I fi (λ i → Sets [ (λ prod → proj prod i) o h ]) ≈ h ] + ip-uniqueness : {q : Obj Sets} {h : Hom Sets q (sproduct I fi)} → Sets [ iproduct1 I fi (λ i → Sets [ (λ prod → proj prod i) o h ]) ≈ h ] ip-uniqueness = refl @@ -183,28 +183,32 @@ record slim { c₂ } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I → I ) → sobj i → sobj j ) : Set c₂ where field - slequ : { i j : OC } → ( f : I → I ) → sequ (iproduct OC sobj ) (sobj j) ( λ x → smap f ( proj x i ) ) ( λ x → proj x j ) - snmap : OC → Set c₂ - snmap i = sobj i - ipp : {i j : OC } → (f : I → I ) → iproduct OC sobj + slequ : { i j : OC } → ( f : I → I ) → sequ (sproduct OC sobj ) (sobj j) ( λ x → smap f ( proj x i ) ) ( λ x → proj x j ) + slobj : OC → Set c₂ + slobj i = sobj i + slmap : {i j : OC } → (f : I → I ) → sobj i → sobj j + slmap f = smap f + ipp : {i j : OC } → (f : I → I ) → sproduct OC sobj ipp {i} {j} f = equ ( slequ {i} {j} f ) open slim lemma-equ : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} )) - {i j j' : Obj C } → ( f f' : I → I ) + {i j i' j' : Obj C } → { f f' : I → I } → (se : slim (ΓObj s Γ) (ΓMap s Γ) ) - → proj (ipp se {i} {j} f) i ≡ proj (ipp se {i} {j'} f' ) i -lemma-equ C I s Γ {i} {j} f f' se = ≡cong ( λ p -> proj p i ) ( begin - ipp se f + → proj (ipp se {i} {j} f) i ≡ proj (ipp se {i'} {j'} f' ) i +lemma-equ C I s Γ {i} {j} {i'} {j'} {f} {f'} se = ≡cong ( λ p -> proj p i ) ( begin + ipp se {i} {j} f ≡⟨⟩ - record { proj = λ i → proj (equ (slequ se f)) i } + record { proj = λ x → proj (equ (slequ se f)) x } ≡⟨ ≡cong ( λ p → record { proj = proj p i }) ( ≡cong ( λ QIX → record { proj = QIX } ) ( - extensionality Sets ( λ x → ≡cong ( λ qi → qi x ) refl + extensionality Sets ( λ x → ≡cong ( λ qi → qi x ) refl ) )) ⟩ - record { proj = λ i → proj (equ (slequ se f')) i } + ? + ≡⟨ ? ⟩ + record { proj = λ x → proj (equ (slequ se f')) x } ≡⟨⟩ - ipp se f' + ipp se {i'} {j'} f' ∎ ) where open import Relation.Binary.PropositionalEquality open ≡-Reasoning @@ -228,11 +232,11 @@ FMap Γ f (proj ( ipp se {a} {a} (\x -> x) ) a) ≡⟨ ≡cong ( λ g → FMap Γ g (proj ( ipp se {a} {a} (\x -> x) ) a)) (sym ( hom-iso s ) ) ⟩ FMap Γ (hom← s ( hom→ s f)) (proj ( ipp se {a} {a} (\x -> x) ) a) - ≡⟨ ≡cong ( λ g → FMap Γ (hom← s ( hom→ s f)) g ) ( lemma-equ C I s Γ (\x -> x) (hom→ s f) se ) ⟩ + ≡⟨ ≡cong ( λ g → FMap Γ (hom← s ( hom→ s f)) g ) ( lemma-equ C I s Γ se ) ⟩ FMap Γ (hom← s ( hom→ s f)) (proj ( ipp se {a} {b} (hom→ s f) ) a) ≡⟨ fe=ge0 ( slequ se (hom→ s f ) ) ⟩ proj (ipp se {a} {b} ( hom→ s f )) b - ≡⟨ {!!} ⟩ + ≡⟨ sym ( lemma-equ C I s Γ se ) ⟩ proj (ipp se {b} {b} (λ x → x)) b ≡⟨⟩ (Sets [ (λ se₁ → proj (ipp se₁ (λ x → x)) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) f ]) se @@ -271,8 +275,8 @@ record { proj = λ i → (Sets [ TMap (Cone C I s Γ) i o f ]) x } ≡⟨⟩ record { proj = λ i → proj (ipp (f x) {i} {i} (\x -> x) ) i } - ≡⟨ ≡cong ( λ g → record { proj = λ i' -> g i' } ) ( extensionality Sets ( λ i'' → ? lemma-equ C I s Γ ? ? (f x))) ⟩ - record { proj = λ i → proj (ipp (f x) {{!!}} {{!!}} f') i } + ≡⟨ ≡cong ( λ g → record { proj = λ i' -> g i' } ) ( extensionality Sets ( λ i'' → lemma-equ C I s Γ (f x))) ⟩ + record { proj = λ i → proj (ipp (f x) f') i } ∎ where open import Relation.Binary.PropositionalEquality open ≡-Reasoning