Mercurial > hg > Members > kono > Proof > category
changeset 575:761df92aa225
look like dead end
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 27 Apr 2017 10:51:29 +0900 |
parents | dbb5da4ab08f |
children | 9455768b05f4 6b9737d041b4 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 17 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Wed Apr 26 00:55:30 2017 +0900 +++ b/SetsCompleteness.agda Thu Apr 27 10:51:29 2017 +0900 @@ -180,7 +180,7 @@ ΓMap s Γ {i} {j} f = FMap Γ ( hom← s f ) -record slim { c₂ } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I → I )→ sobj i → sobj j ) +record slim { c₂ } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I → I ) → sobj i → sobj j ) : Set c₂ where field slequ : { i j : OC } → ( f : I → I ) → sequ (iproduct OC sobj ) (sobj j) ( λ x → smap f ( proj x i ) ) ( λ x → proj x j ) @@ -195,11 +195,17 @@ {i j j' : Obj C } → ( f f' : I → I ) → (se : slim (ΓObj s Γ) (ΓMap s Γ) ) → proj (ipp se {i} {j} f) i ≡ proj (ipp se {i} {j'} f' ) i -lemma-equ C I s Γ {i} {j} f f' se = begin - proj ( ipp se f ) i - ≡⟨ {!!} ⟩ - proj ( ipp se f' ) i - ∎ where +lemma-equ C I s Γ {i} {j} f f' se = ≡cong ( λ p -> proj p i ) ( begin + ipp se f + ≡⟨⟩ + record { proj = λ i → proj (equ (slequ se f)) i } + ≡⟨ ≡cong ( λ p → record { proj = proj p i }) ( ≡cong ( λ QIX → record { proj = QIX } ) ( + extensionality Sets ( λ x → ≡cong ( λ qi → qi x ) refl + ) )) ⟩ + record { proj = λ i → proj (equ (slequ se f')) i } + ≡⟨⟩ + ipp se f' + ∎ ) where open import Relation.Binary.PropositionalEquality open ≡-Reasoning @@ -222,11 +228,11 @@ FMap Γ f (proj ( ipp se {a} {a} (\x -> x) ) a) ≡⟨ ≡cong ( λ g → FMap Γ g (proj ( ipp se {a} {a} (\x -> x) ) a)) (sym ( hom-iso s ) ) ⟩ FMap Γ (hom← s ( hom→ s f)) (proj ( ipp se {a} {a} (\x -> x) ) a) - ≡⟨ ≡cong ( λ g → FMap Γ (hom← s ( hom→ s f)) g ) ( lemma-equ C I s Γ {!!} {!!} se ) ⟩ + ≡⟨ ≡cong ( λ g → FMap Γ (hom← s ( hom→ s f)) g ) ( lemma-equ C I s Γ (\x -> x) (hom→ s f) se ) ⟩ FMap Γ (hom← s ( hom→ s f)) (proj ( ipp se {a} {b} (hom→ s f) ) a) ≡⟨ fe=ge0 ( slequ se (hom→ s f ) ) ⟩ proj (ipp se {a} {b} ( hom→ s f )) b - ≡⟨ sym {!!} ⟩ + ≡⟨ {!!} ⟩ proj (ipp se {b} {b} (λ x → x)) b ≡⟨⟩ (Sets [ (λ se₁ → proj (ipp se₁ (λ x → x)) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) f ]) se @@ -261,11 +267,11 @@ → record { proj = λ i₁ → TMap t i₁ x } ≡ equ (slequ (f x) f') uniquness2 {a} {t} {f} i j cif=t f' x = begin record { proj = λ i → TMap t i x } - ≡⟨ ≡cong ( λ g → record { proj = λ i → g i } ) ( extensionality Sets ( λ i → sym ( ≡cong ( λ e → e x ) cif=t ) ) ) ⟩ + ≡⟨ ≡cong ( λ g → record { proj = λ i → g i } ) ( extensionality Sets ( λ i → sym ( ≡cong ( λ e → e x ) cif=t ) ) ) ⟩ record { proj = λ i → (Sets [ TMap (Cone C I s Γ) i o f ]) x } ≡⟨⟩ - record { proj = λ i → proj (ipp (f x) {{!!}} {{!!}} (\x -> x) ) i } - ≡⟨ ≡cong ( λ g → record { proj = λ i → g i } ) ( extensionality Sets ( λ i → {!!}) ) ⟩ + record { proj = λ i → proj (ipp (f x) {i} {i} (\x -> x) ) i } + ≡⟨ ≡cong ( λ g → record { proj = λ i' -> g i' } ) ( extensionality Sets ( λ i'' → ? lemma-equ C I s Γ ? ? (f x))) ⟩ record { proj = λ i → proj (ipp (f x) {{!!}} {{!!}} f') i } ∎ where open import Relation.Binary.PropositionalEquality