Mercurial > hg > Members > kono > Proof > category
changeset 565:6cf91ef84ca0
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Apr 2017 10:40:38 +0900 |
parents | 40dfdb801061 |
children | ecef5008cc17 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 12 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Mon Apr 24 10:18:36 2017 +0900 +++ b/SetsCompleteness.agda Mon Apr 24 10:40:38 2017 +0900 @@ -245,13 +245,24 @@ limit1 a t x = record { snequ1 = λ {i} {j} f → elem ( record { snmap = λ i → TMap t i x } ) ( limit2 a t f x ) } + uniquness2 : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snequ (ΓObj s Γ) (ΓMap s Γ) )} → + ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → (x : a ) + → elem ( record { snmap = λ i → TMap t i x } ) ( limit2 a t {!!} x ) ≡ snequ1 (f x ) {!!} + uniquness2 = {!!} uniquness1 : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snequ (ΓObj s Γ) (ΓMap s Γ) )} → ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] uniquness1 {a} {t} {f} cif=t = extensionality Sets ( λ x → begin limit1 a t x ≡⟨⟩ record { snequ1 = λ {i} {j} f → elem ( record { snmap = λ i → TMap t i x } ) ( limit2 a t f x ) } - ≡⟨ ≡cong ( λ e → record { snequ1 = λ {i} {j} f → e x } ) ? ⟩ + ≡⟨ ≡cong ( λ e → record { snequ1 = λ {i} {j} f' → e i j f' x } ) ( + extensionality Sets ( λ i → + extensionality Sets ( λ j → + extensionality Sets ( λ f' → + extensionality Sets ( λ x → + elm-cong ( elem ( record { snmap = λ i → TMap t i x } ) ( limit2 a t f' x )) (snequ1 (f x) f' ) {!!} ) + ))) + ) ⟩ record { snequ1 = λ {i} {j} f' → snequ1 (f x ) f' } ≡⟨⟩ f x