Mercurial > hg > Members > kono > Proof > category
changeset 12:72397d77c932
Reasoning complete!
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jul 2013 20:20:51 +0900 |
parents | 2cbecadc56c1 |
children | 7fa1b11a097a |
files | nat.agda |
diffstat | 1 files changed, 13 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/nat.agda Sun Jul 07 19:20:37 2013 +0900 +++ b/nat.agda Sun Jul 07 20:20:51 2013 +0900 @@ -151,7 +151,10 @@ data IsRelatedTo {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } ( x y : Hom A a b ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where - relTo : (x≈y : A [ x ≈ y ] ) → IsRelatedTo A x y + relTo : (x≈y : Category._≈_ x y ) → IsRelatedTo A x y + + lemma11 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } ( x y : Hom A a b ) -> ? + lemma11 = \c -> relTo ( IsCategory.identityL (Category.isCategory c) ) begin_ : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A } { x y : Hom A a b} → IsRelatedTo A x y → A [ x ≈ y ] @@ -170,14 +173,15 @@ { a b : Obj A } { f : Hom A a b } -> A [ A [ (Id {_} {_} {_} {A} b) o f ] ≈ f ] -Lemma61 c = IsCategory.identityL (Category.isCategory c) - --- -> let open ≈-Reasoning c in --- begin --- c [ (Id {_} {_} {_} {c} b) o f ] --- ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩ --- f --- ∎ +Lemma61 c = -- IsCategory.identityL (Category.isCategory c) + { a b : Obj c } + { f : Hom c a b } + -> let open ≈-Reasoning c in + begin + c [ (Id {_} {_} {_} {c} b) o f ] + ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩ + f + ∎ open Kleisli Lemma7 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ->