Mercurial > hg > Members > kono > Proof > category
changeset 546:73a5606fa362
on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 04 Apr 2017 11:24:47 +0900 |
parents | cb0d01f1eec9 |
children | c0078b03201c |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 34 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Sat Apr 01 16:03:01 2017 +0900 +++ b/SetsCompleteness.agda Tue Apr 04 11:24:47 2017 +0900 @@ -176,26 +176,54 @@ open snat +snat1 : { c₂ : Level } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I )→ sobj i → sobj j ) + ( snm : ( i : OC ) → sobj i ) → (( snm1 : ( i : OC ) → sobj i ) ( i j : OC ) → (f : I ) → smap f ( snm1 i ) ≡ snm1 j ) → snat sobj smap +snat1 SO SM snm eq = record { snmap = λ i → snm i ; sncommute = λ {i} {j} f → eq snm i j f } + ≡cong2 : { c : Level } { A B C : Set c } { a a' : A } { b b' : B } ( f : A → B → C ) → a ≡ a' → b ≡ b' → f a b ≡ f a' b' ≡cong2 _ refl refl = refl +≡cong3 : { c : Level } { I OC A B C : Set c } { a a' : OC → A } { b b' : I → B } ( f : (OC → A ) → (I → B ) → C ) + → a ≡ a' + → b ≡ b' + → f a b ≡ f a' b' +≡cong3 _ refl refl = refl + + +snat-cong1 : { c : Level } { I OC : Set c } ( SObj : OC → Set c ) ( SMap : { i j : OC } → (f : I )→ SObj i → SObj j) + { s t : snat SObj SMap } + → ( snmap s ≡ snmap t ) + → ( ( i j : OC ) ( f : I ) → SMap {i} {j} f ( snmap s i ) ≡ snmap s j ) + → ( ( i j : OC ) ( f : I ) → SMap {i} {j} f ( snmap t i ) ≡ snmap t j ) + → s ≡ t +snat-cong1 SO SM eq eq1 eq2 = ≡cong3 ( λ x y → snat1 SO SM {!!} {!!} ) {!!} {!!} + snat-cong : { c : Level } { I OC : Set c } ( SObj : OC → Set c ) ( SMap : { i j : OC } → (f : I )→ SObj i → SObj j) { s t : snat SObj SMap } → (( i : OC ) → snmap s i ≡ snmap t i ) → ( ( i j : OC ) ( f : I ) → SMap {i} {j} f ( snmap s i ) ≡ snmap s j ) → ( ( i j : OC ) ( f : I ) → SMap {i} {j} f ( snmap t i ) ≡ snmap t j ) → s ≡ t -snat-cong {_} {I} {OC} SO SM {s} {t} eq1 eq2 eq3 = ≡cong2 ( λ x y → record { snmap = λ i → x i ; sncommute = λ {i} {j} f → ? } ) +snat-cong {_} {I} {OC} SO SM {s} {t} eq1 eq2 eq3 = ≡cong2 ( λ x y → snat1 SO SM x y ) ( extensionality Sets ( λ i → eq1 i ) ) - ( extensionality Sets ( λ i → ( extensionality Sets ( λ j → ( extensionality Sets ( λ f → - irr2 (eq1 i) (eq1 j) {!!} {!!} )))))) + ( extensionality Sets ( λ snm → + ( extensionality Sets ( λ i → + ( extensionality Sets ( λ j → + ( extensionality Sets ( λ f → irr2 snm i j f ? {!!} )))))))) where - irr2 : { i j : OC } { f : I } → {snmapsi snmapti : SO i } {snmapsj snmaptj : SO j } → snmapsi ≡ snmapti → snmapsj ≡ snmaptj → - ( es et : SM f ( snmapsi ) ≡ snmapsj ) → es ≡ et - irr2 refl refl es et = irr es et + irr2 : ( snm : ( i : OC ) → SO i ) ( i j : OC ) (f : I ) → + ( es et : SM f (snm i ) ≡ snm j ) → es ≡ et + irr2 _ _ _ _ es et = {!!} + +-- irr3 : { i j : OC } { f : I } → {snmapsi : SO i } → {snmapsj : SO j } → +-- ( es et : SM f ( snmapsi ) ≡ snmapsj ) → es ≡ et +-- irr3 refl refl = refl +-- irr2 : { i j : OC } { f : I } → {snmapsi snmapti : SO i } {snmapsj snmaptj : SO j } → snmapsi ≡ snmapti → snmapsj ≡ snmaptj → +-- ( es : SM f ( snmapsi ) ≡ snmapsj ) ( et : SM f ( snmapti ) ≡ snmaptj ) → {!!} +-- irr2 refl refl es et = irr3 es et open import HomReasoning