Mercurial > hg > Members > kono > Proof > category
changeset 489:75a60ceb55af
on going ..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 12 Mar 2017 22:10:54 +0900 |
parents | 016087cfa75a |
children | 1a42f06e7ae1 |
files | freyd1.agda |
diffstat | 1 files changed, 48 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd1.agda Sun Mar 12 20:58:06 2017 +0900 +++ b/freyd1.agda Sun Mar 12 22:10:54 2017 +0900 @@ -57,20 +57,20 @@ → Limit C I (FICG Γ) LimitC {I} comp Γ glimit = plimit glimit (FIA Γ) (climit comp (FIA Γ)) -commaLimit : { I : Category c₁ c₂ ℓ } → ( Complete A I) → ( Γ : Functor I CommaCategory ) - → ( glimit : LimitPreserve A I C G ) - → Obj CommaCategory -commaLimit {I} comp Γ glimit = record { - obj = limit-c comp (FIA Γ) - ; hom = limitHom - } where - frev : {i : Obj I } → Hom A (limit-c comp (FIA Γ)) (obj (FObj Γ i)) - frev {i} = TMap (t0 ( climit comp (FIA Γ))) i - commute : {a b : Obj I} {f : Hom I a b} → - C [ C [ FMap (FICG Γ) f o C [ hom (FObj Γ a) o FMap F frev ] ] - ≈ C [ C [ hom (FObj Γ b) o FMap F frev ] o FMap (K C I (FObj F (limit-c comp (FIA Γ)))) f ] ] - commute {a} {b} {f} = let open ≈-Reasoning (C) in begin - FMap (FICG Γ) f o ( hom (FObj Γ a) o FMap F frev ) +frev : { I : Category c₁ c₂ ℓ } → (comp : Complete A I) → ( Γ : Functor I CommaCategory ) (i : Obj I ) → Hom A (limit-c comp (FIA Γ)) (obj (FObj Γ i)) +frev comp Γ i = TMap (t0 ( climit comp (FIA Γ))) i + +tu : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I) → ( Γ : Functor I CommaCategory ) + → NTrans I C (K C I (FObj F (limit-c comp (FIA Γ)))) (FICG Γ) +tu {I} comp Γ = record { + TMap = λ i → C [ hom ( FObj Γ i ) o FMap F (frev comp Γ i) ] + ; isNTrans = record { commute = λ {a} {b} {f} → commute {a} {b} {f} } + } where + commute : {a b : Obj I} {f : Hom I a b} → + C [ C [ FMap (FICG Γ) f o C [ hom (FObj Γ a) o FMap F (frev comp Γ a) ] ] + ≈ C [ C [ hom (FObj Γ b) o FMap F (frev comp Γ b) ] o FMap (K C I (FObj F (limit-c comp (FIA Γ)))) f ] ] + commute {a} {b} {f} = let open ≈-Reasoning (C) in begin + FMap (FICG Γ) f o ( hom (FObj Γ a) o FMap F (frev comp Γ a) ) ≈⟨⟩ FMap G (arrow (FMap Γ f ) ) o ( hom (FObj Γ a) o FMap F ( TMap (t0 ( climit comp (FIA Γ))) a )) ≈⟨ assoc ⟩ @@ -92,15 +92,19 @@ ≈⟨ cdr ( cdr ( IsFunctor.identity (isFunctor F) ) ) ⟩ hom (FObj Γ b) o ( FMap F (TMap (t0 ( climit comp (FIA Γ))) b) o id1 C (FObj F (limit-c comp (FIA Γ)))) ≈⟨ assoc ⟩ - ( hom (FObj Γ b) o FMap F frev ) o FMap (K C I (FObj F (limit-c comp (FIA Γ)))) f + ( hom (FObj Γ b) o FMap F (frev comp Γ b)) o FMap (K C I (FObj F (limit-c comp (FIA Γ)))) f ∎ - tu : NTrans I C (K C I (FObj F (limit-c comp (FIA Γ)))) (FICG Γ) - tu = record { - TMap = λ i → C [ hom ( FObj Γ i ) o FMap F frev ] - ; isNTrans = record { commute = λ {a} {b} {f} → commute {a} {b} {f} } - } - limitHom : Hom C (FObj F (limit-c comp (FIA Γ ) )) (FObj G (limit-c comp (FIA Γ) )) - limitHom = limit (isLimit (LimitC comp Γ glimit )) (FObj F ( limit-c comp (FIA Γ))) tu +limitHom : { I : Category c₁ c₂ ℓ } → (comp : Complete A I) → ( Γ : Functor I CommaCategory ) + → ( glimit : LimitPreserve A I C G ) → Hom C (FObj F (limit-c comp (FIA Γ ) )) (FObj G (limit-c comp (FIA Γ) )) +limitHom comp Γ glimit = limit (isLimit (LimitC comp Γ glimit )) (FObj F ( limit-c comp (FIA Γ))) (tu comp Γ ) + +commaLimit : { I : Category c₁ c₂ ℓ } → ( Complete A I) → ( Γ : Functor I CommaCategory ) + → ( glimit : LimitPreserve A I C G ) + → Obj CommaCategory +commaLimit {I} comp Γ glimit = record { + obj = limit-c comp (FIA Γ) + ; hom = limitHom comp Γ glimit + } commaNat : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I) → ( Γ : Functor I CommaCategory ) @@ -109,17 +113,34 @@ commaNat {I} comp Γ glimit = record { TMap = λ x → record { arrow = TMap ( limit-u comp (FIA Γ ) ) x - ; comm = comm1 x + ; comm = comm1 x } - ; isNTrans = record { commute = {!!} } + ; isNTrans = record { commute = comm2 } } where comm1 : (x : Obj I ) → C [ C [ FMap G (TMap (limit-u comp (FIA Γ)) x) o hom (FObj (K CommaCategory I (commaLimit comp Γ glimit)) x) ] ≈ C [ hom (FObj Γ x) o FMap F (TMap (limit-u comp (FIA Γ)) x) ] ] comm1 x = let open ≈-Reasoning (C) in begin - ? - ≈⟨ ? ⟩ - ? + FMap G (TMap (limit-u comp (FIA Γ)) x) o hom (FObj (K CommaCategory I (commaLimit comp Γ glimit)) x) + ≈⟨⟩ + FMap G (TMap (limit-u comp (FIA Γ)) x) o hom (commaLimit comp Γ glimit) + ≈⟨⟩ + FMap G (TMap (limit-u comp (FIA Γ)) x) o limit (isLimit (LimitC comp Γ glimit )) (FObj F ( limit-c comp (FIA Γ))) (tu comp Γ ) + ≈⟨⟩ + TMap (t0 ( LimitC comp Γ glimit )) x o limit (isLimit (LimitC comp Γ glimit )) (FObj F ( limit-c comp (FIA Γ))) (tu comp Γ ) + ≈⟨ t0f=t ( isLimit ( LimitC comp Γ glimit ) ) ⟩ + TMap (tu comp Γ) x + ≈⟨⟩ + hom (FObj Γ x) o FMap F (TMap (limit-u comp (FIA Γ)) x) + ∎ + comm2 : {a b : Obj I} {f : Hom I a b} → + CommaCategory [ CommaCategory [ FMap Γ f o record { arrow = TMap (limit-u comp (FIA Γ)) a ; comm = comm1 a } ] + ≈ CommaCategory [ record { arrow = TMap (limit-u comp (FIA Γ)) b ; comm = comm1 b } o FMap (K CommaCategory I (commaLimit comp Γ glimit)) f ] ] + comm2 {a} {b} {f} = let open ≈-Reasoning (CommaCategory) in begin + FMap Γ f o record { arrow = TMap (limit-u comp (FIA Γ)) a ; comm = comm1 a } + ≈⟨ {!!} ⟩ + record { arrow = TMap (limit-u comp (FIA Γ)) b ; comm = comm1 b } o FMap (K CommaCategory I (commaLimit comp Γ glimit)) f + ∎ hasLimit : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I )