Mercurial > hg > Members > kono > Proof > category
changeset 982:888e6613b99a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 03 Mar 2021 09:48:32 +0900 |
parents | 0e417c508096 |
children | 7ca3c84d4808 |
files | src/ToposEx.agda |
diffstat | 1 files changed, 32 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ToposEx.agda Wed Mar 03 04:51:55 2021 +0900 +++ b/src/ToposEx.agda Wed Mar 03 09:48:32 2021 +0900 @@ -162,34 +162,45 @@ g : Hom A N a g0=f : A [ A [ g o nzero TNat ] ≈ f ] gs=h : A [ A [ g o nsuc TNat ] ≈ A [ h o < id1 A _ , g > ] ] + xnat : NatD A 1 p33 : {a : Obj A} (z : Hom A 1 a ) ( h : Hom A (N ∧ a) a ) → prop33 z h p33 {a} z h = record { g = g ; g0=f = iii ; gs=h = v + ; xnat = xnat } where xnat : NatD A 1 xnat = record { Nat = N ∧ a ; nzero = < nzero TNat , z > ; nsuc = < nsuc TNat o π , h > } fg : Hom A N (N ∧ a ) - fg = gNat xnat + fg = gNat xnat -- < f , g > f : Hom A N N f = π o fg g : Hom A N a g = π' o fg - ig : f ≈ id1 A N - ig = begin - f ≈⟨ nat-unique TNat {!!} {!!} ⟩ - gNat TNat ≈↑⟨ nat-unique TNat idL (trans-hom idL (sym idR) ) ⟩ - id1 A _ ∎ i : f o nzero TNat ≈ nzero TNat i = begin - f o nzero TNat ≈⟨ car ig ⟩ id1 A _ o nzero TNat ≈⟨ idL ⟩ + f o nzero TNat ≈⟨⟩ + (π o fg) o nzero TNat ≈↑⟨ assoc ⟩ + π o (fg o nzero TNat ) ≈⟨ cdr (IsToposNat.izero isToposN xnat ) ⟩ + π o nzero xnat ≈⟨ IsCCC.e3a isCCC ⟩ nzero TNat ∎ ii : f o nsuc TNat ≈ nsuc TNat o f ii = begin - f o nsuc TNat ≈⟨ car ig ⟩ id1 A _ o nsuc TNat ≈⟨ idL ⟩ nsuc TNat ≈↑⟨ idR ⟩ nsuc TNat o id1 A _ ≈↑⟨ cdr ig ⟩ + f o nsuc TNat ≈⟨⟩ + (π o fg ) o nsuc TNat ≈↑⟨ assoc ⟩ + π o ( fg o nsuc TNat ) ≈⟨ cdr (IsToposNat.isuc isToposN xnat ) ⟩ + π o (nsuc xnat o gNat xnat) ≈⟨ assoc ⟩ + (π o < nsuc TNat o π , h > ) o gNat xnat ≈⟨ car (IsCCC.e3a isCCC) ⟩ + ( nsuc TNat o π ) o gNat xnat ≈↑⟨ assoc ⟩ + nsuc TNat o ( π o gNat xnat ) ≈⟨⟩ nsuc TNat o f ∎ + ig : f ≈ id1 A N + ig = begin + f ≈⟨ nat-unique TNat i ii ⟩ + gNat TNat ≈↑⟨ nat-unique TNat idL (trans-hom idL (sym idR) ) ⟩ + id1 A _ ∎ iii : g o nzero TNat ≈ z iii = begin g o nzero TNat ≈⟨⟩ (π' o gNat xnat ) o nzero TNat ≈↑⟨ assoc ⟩ @@ -222,7 +233,7 @@ _+_ = λ {a} f g → prop33.g (p f ( g o π )) -- Hom A (N n ∧ a) a ; κ1f+g=f = λ {a} {f} {g} → prop33.g0=f (p f (g o π ) ) ; κ2f+g=g = λ {a} {f} {g} → k2 {a} {f} {g} - ; uniqueness = {!!} + ; uniqueness = uniq ; +-cong = λ f=f' g=g' → {!!} -- prop33.g-cong p f=f' (resp refl-hom g=g' ) } } where @@ -236,6 +247,18 @@ g o ( π o < id1 A N , prop33.g (p f (g o π)) >) ≈⟨ cdr (IsCCC.e3a isCCC ) ⟩ g o id1 A N ≈⟨ idR ⟩ g ∎ + pp : {c : Obj A} {h : Hom A (Nat TNat) c} → prop33 ( h o nzero TNat ) ( (h o nsuc TNat) o π) + pp {c} {h} = p ( h o nzero TNat ) ( (h o nsuc TNat) o π) + uniq : {c : Obj A} {h : Hom A (Nat TNat) c} → + prop33.g pp ≈ h + uniq {c} {h} = begin + prop33.g pp ≈⟨⟩ + π' o gNat (prop33.xnat pp) ≈↑⟨ cdr (nat-unique (prop33.xnat pp) {{!!}} {!!} {!!}) ⟩ + π' o {!!} ≈⟨ {!!} ⟩ + h ∎ + + -- sym ( nat-unique ? (prop33.g0=f (p ( h o nzero TNat ) ( (h o nsuc TNat) o π) )) ? ) +