Mercurial > hg > Members > kono > Proof > category
changeset 212:8b3d3f69b725
b2
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 03 Sep 2013 01:11:59 +0900 |
parents | 8c738327df19 |
children | f2faee0897c7 |
files | equalizer.agda |
diffstat | 1 files changed, 37 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Mon Sep 02 23:18:40 2013 +0900 +++ b/equalizer.agda Tue Sep 03 01:11:59 2013 +0900 @@ -33,17 +33,17 @@ record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field - α : (f : Hom A a b) → (g : Hom A a b ) → Hom A c a --- γ : {d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e - δ : (f : Hom A a b) → Hom A a c - b1 : {e : Obj A } → A [ A [ f o α f g ] ≈ A [ g o α f g ] ] --- b2 : {e d : Obj A } → {h : Hom A d a } → A [ A [ α {e} f g o γ f g h ] ≈ A [ h o α {c} (A [ f o h ]) (A [ g o h ]) ] ] + α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → Hom A c a + γ : {a b d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c d + δ : {a b c : Obj A } → (f : Hom A a b) → Hom A a c + b1 : A [ A [ f o α f g ] ≈ A [ g o α f g ] ] + b2 : {d : Obj A } → {h : Hom A d a } → A [ A [ ( α f g) o (γ f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] b3 : {e : Obj A} → A [ A [ α f f o δ f ] ≈ id1 A a ] -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] --- b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ k ] + b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ ? ] -- A [ α f g o β f g h ] ≈ h --- β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e --- β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] +-- β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A a d +-- β {d} {e} {a} {b} f g h = A [ γ {a} {b} {d} f g h o δ (A [ f o h ]) ] open Equalizer open EqEqualizer @@ -52,12 +52,12 @@ ( {a b c : Obj A} → (f g : Hom A a b) → Equalizer A {c} f g ) → EqEqualizer A {c} f g lemma-equ1 A {a} {b} {c} f g eqa = record { α = λ f g → e (eqa f g ) ; -- Hom A c a --- γ = λ {d} {e} {a} {b} f g h → {!!} ; -- Hom A c e - δ = λ f → k (eqa f f) (id1 A a) (lemma-equ2 f); -- Hom A a c + γ = λ {a} {b} {d} f g h → ( k (eqa f g ) ( A [ h o (e ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {d} f g h ) ) ; -- Hom A c d + δ = λ f → k (eqa f f) (id1 A (Category.dom A f)) (lemma-equ2 f); -- Hom A a c b1 = ef=eg (eqa f g) ; --- b2 = {!!} ; - b3 = lemma-equ3 -- ; --- b4 = {!!} + b2 = lemma-equ5 ; + b3 = lemma-equ3 ; + b4 = {!!} } where lemma-equ2 : {a b : Obj A} (f : Hom A a b) → A [ A [ f o id1 A a ] ≈ A [ f o id1 A a ] ] lemma-equ2 f = let open ≈-Reasoning (A) in refl-hom @@ -68,5 +68,29 @@ ≈⟨ ke=h (eqa f f ) (lemma-equ2 f) ⟩ id1 A a ∎ + lemma-equ4 : {a b d : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → + A [ A [ f o A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] ≈ A [ g o A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] ] + lemma-equ4 {a} {b} {d} f g h = let open ≈-Reasoning (A) in + begin + f o ( h o e (eqa (f o h) ( g o h ))) + ≈⟨ assoc ⟩ + (f o h) o e (eqa (f o h) ( g o h )) + ≈⟨ ef=eg (eqa (A [ f o h ]) (A [ g o h ])) ⟩ + (g o h) o e (eqa (f o h) ( g o h )) + ≈↑⟨ assoc ⟩ + g o ( h o e (eqa (f o h) ( g o h ))) + ∎ + lemma-equ5 : {d : Obj A} {h : Hom A d a} → A [ + A [ e (eqa f g) o k (eqa f g) (A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 f g h) ] + ≈ A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] + lemma-equ5 {d} {h} = let open ≈-Reasoning (A) in + begin + e (eqa f g) o k (eqa f g) (h o e (eqa (f o h) (g o h))) (lemma-equ4 f g h) + ≈⟨ ke=h (eqa f g) (lemma-equ4 f g h) ⟩ + h o e (eqa (f o h ) ( g o h )) + ∎ + + +