Mercurial > hg > Members > kono > Proof > category
changeset 914:8c2da34e8dc1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 02 May 2020 05:32:42 +0900 |
parents | c5446790ddb1 |
children | fa302d99fa40 c10ee19a1ea3 |
files | CCCGraph.agda deductive.agda |
diffstat | 2 files changed, 23 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Sat May 02 04:25:05 2020 +0900 +++ b/CCCGraph.agda Sat May 02 05:32:42 2020 +0900 @@ -414,11 +414,17 @@ csc g = record { cat = CSC ; ccc = cc1 ; ≡←≈ = λ eq → eq } where open ccc-from-graph g cobj : {g : Obj Grph} {c : Obj (Cart {c₁} {c₁} {c₁})} → Hom Grph g (FObj UX c) → Obj (cat (csc g)) → Obj (cat c) - cobj {g} {c} f (atom x) = {!!} + cobj {g} {c} f (atom x) = vmap f x cobj {g} {c} f ⊤ = CCC.1 (ccc c) - cobj {g} {c} f (x ∧ y) = CCC._∧_ (ccc c) {!!} {!!} - cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) {!!} {!!} + cobj {g} {c} f (x ∧ y) = CCC._∧_ (ccc c) (cobj {g} {c} f x) (cobj {g} {c} f y) + cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) + c-map : {g : Obj Grph} {c : Obj (Cart {c₁} {c₁} {c₁})} {A B : Obj (cat (csc g))} + → (f : Hom Grph g (FObj UX c) ) → Hom (cat (csc g)) A B → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) + c-map {g} {c} {a} {atom x} f y = ? + c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) + c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f (λ w → proj₁ (z w))) (c-map f (λ w → proj₂ (z w))) + c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) {!!} -- with c-map f x solution : {g : Obj Grph} {c : Obj Cart} → Hom Grph g (FObj UX c) → Hom Cart (csc g) c - solution {g} {c} f = record { cmap = record { FObj = λ x → cobj {g} {c} f x ; FMap = {!!} ; isFunctor = {!!} } ; ccf = {!!} } + solution {g} {c} f = record { cmap = record { FObj = λ x → cobj {g} {c} f x ; FMap = c-map {g} {c} f ; isFunctor = {!!} } ; ccf = {!!} }
--- a/deductive.agda Sat May 02 04:25:05 2020 +0900 +++ b/deductive.agda Sat May 02 05:32:42 2020 +0900 @@ -27,20 +27,23 @@ -- every proof b → c with assumption a has following forms data φ {a : Obj A } ( x : Hom A ⊤ a ) : {b c : Obj A } → Hom A b c → Set ( c₁ ⊔ c₂ ) where - i : {b c : Obj A} {k : Hom A b c } → φ x k - ii : φ x {⊤} {a} x + i : {b c : Obj A} {k : Hom A b c } → φ x k + ii : φ x {⊤} {a} x iii : {b c' c'' : Obj A } { f : Hom A b c' } { g : Hom A b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x {b} {c' ∧ c''} < f , g > - iv : {b c d : Obj A } { f : Hom A d c } { g : Hom A b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ・ g ) - v : {b c' c'' : Obj A } { f : Hom A (b ∧ c') c'' } (ψ : φ x f ) → φ x {b} {c'' <= c'} ( f * ) + iv : {b c d : Obj A } { f : Hom A d c } { g : Hom A b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ・ g ) + v : {b c' c'' : Obj A } { f : Hom A (b ∧ c') c'' } (ψ : φ x f ) → φ x {b} {c'' <= c'} ( f * ) α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) α = < π ・ π , < π' ・ π , π' > > -- genetate (a ∧ b) → c proof from proof b → c with assumption a - kx∈a : {a b c : Obj A } → ( x : Hom A ⊤ a ) → {z : Hom A b c } → ( y : φ {a} x z ) → Hom A (a ∧ b) c - kx∈a x {k} i = k ・ π' - kx∈a x ii = π - kx∈a x (iii ψ χ ) = < kx∈a x ψ , kx∈a x χ > - kx∈a x (iv ψ χ ) = kx∈a x ψ ・ < π , kx∈a x χ > - kx∈a x (v ψ ) = ( kx∈a x ψ ・ α ) * + k : {a b c : Obj A } → ( x∈a : Hom A ⊤ a ) → {z : Hom A b c } → ( y : φ {a} x∈a z ) → Hom A (a ∧ b) c + k x∈a {k} i = k ・ π' + k x∈a ii = π + k x∈a (iii ψ χ ) = < k x∈a ψ , k x∈a χ > + k x∈a (iv ψ χ ) = k x∈a ψ ・ < π , k x∈a χ > + k x∈a (v ψ ) = ( k x∈a ψ ・ α ) * + +-- toφ : {a b c : Obj A } → ( x∈a : Hom A ⊤ a ) → (z : Hom A b c ) → φ {a} x∈a z +-- toφ {a} {b} {c} x∈a z = {!!}