Mercurial > hg > Members > kono > Proof > category
changeset 211:8c738327df19
b3
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Sep 2013 23:18:40 +0900 |
parents | 51c57efe89b9 |
children | 8b3d3f69b725 |
files | equalizer.agda |
diffstat | 1 files changed, 20 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Mon Sep 02 22:21:51 2013 +0900 +++ b/equalizer.agda Mon Sep 02 23:18:40 2013 +0900 @@ -15,7 +15,6 @@ open import Category -- https://github.com/konn/category-agda open import Level -open import Category.Sets module equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where open import HomReasoning @@ -36,10 +35,10 @@ field α : (f : Hom A a b) → (g : Hom A a b ) → Hom A c a -- γ : {d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e --- δ : {a b : Obj A} → (f : Hom A a b) → Hom A a c + δ : (f : Hom A a b) → Hom A a c b1 : {e : Obj A } → A [ A [ f o α f g ] ≈ A [ g o α f g ] ] -- b2 : {e d : Obj A } → {h : Hom A d a } → A [ A [ α {e} f g o γ f g h ] ≈ A [ h o α {c} (A [ f o h ]) (A [ g o h ]) ] ] --- b3 : {e : Obj A} → A [ A [ α f f o δ f ] ≈ id1 A a ] + b3 : {e : Obj A} → A [ A [ α f f o δ f ] ≈ id1 A a ] -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] -- b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ k ] -- A [ α f g o β f g h ] ≈ h @@ -49,13 +48,25 @@ open Equalizer open EqEqualizer -lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b c : Obj A} (f g : Hom A a b) → Equalizer A {c} f g → EqEqualizer A {c} f g +lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → {a b c : Obj A} (f g : Hom A a b) → + ( {a b c : Obj A} → (f g : Hom A a b) → Equalizer A {c} f g ) → EqEqualizer A {c} f g lemma-equ1 A {a} {b} {c} f g eqa = record { - α = λ f g → e eqa ; -- Hom A c a + α = λ f g → e (eqa f g ) ; -- Hom A c a -- γ = λ {d} {e} {a} {b} f g h → {!!} ; -- Hom A c e --- δ = λ {a} {b} f → {!!} ; -- Hom A a c - b1 = ef=eg eqa -- ; + δ = λ f → k (eqa f f) (id1 A a) (lemma-equ2 f); -- Hom A a c + b1 = ef=eg (eqa f g) ; -- b2 = {!!} ; --- b3 = {!!} ; + b3 = lemma-equ3 -- ; -- b4 = {!!} - } + } where + lemma-equ2 : {a b : Obj A} (f : Hom A a b) → A [ A [ f o id1 A a ] ≈ A [ f o id1 A a ] ] + lemma-equ2 f = let open ≈-Reasoning (A) in refl-hom + lemma-equ3 : {e' : Obj A} → A [ A [ e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) ] ≈ id1 A a ] + lemma-equ3 {e'} = let open ≈-Reasoning (A) in + begin + e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) + ≈⟨ ke=h (eqa f f ) (lemma-equ2 f) ⟩ + id1 A a + ∎ + +