Mercurial > hg > Members > kono > Proof > category
changeset 958:9089540fe89d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 21 Feb 2021 16:49:01 +0900 |
parents | e29b6488b179 |
children | d743fd968582 |
files | src/equalizer.agda |
diffstat | 1 files changed, 32 insertions(+), 26 deletions(-) [+] |
line wrap: on
line diff
--- a/src/equalizer.agda Sun Feb 21 12:57:05 2021 +0900 +++ b/src/equalizer.agda Sun Feb 21 16:49:01 2021 +0900 @@ -47,20 +47,20 @@ -- Burroni's Flat Equational Definition of Equalizer -- -record Burroni {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where +record Burroni : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field equ : {a b : Obj A } → (f g : Hom A a b) → Obj A α : {a b : Obj A } → (f g : Hom A a b) → Hom A (equ f g) a γ : {a b d : Obj A } → (f g : Hom A a b) → (h : Hom A d a ) → Hom A (equ (A [ f o h ]) (A [ g o h ])) (equ f g) δ : {a b : Obj A } → (f g : Hom A a b) → A [ f ≈ g ] → Hom A a (equ f g) - b1 : A [ A [ f o α f g ] ≈ A [ g o α f g ] ] - b1k : {d : Obj A } {k : Hom A d (equ f g)} → A [ A [ f o A [ α f g o k ] ] ≈ A [ g o A [ α f g o k ] ] ] - b1k {d} {k} = ≈-Reasoning.trans-hom A (≈-Reasoning.assoc A) (≈-Reasoning.trans-hom A (≈-Reasoning.car A b1) (≈-Reasoning.sym A (≈-Reasoning.assoc A))) + b1 : {a b : Obj A } → (f g : Hom A a b) → A [ A [ f o α f g ] ≈ A [ g o α f g ] ] + b1k : {a b : Obj A } → (f g : Hom A a b) → {d : Obj A } {k : Hom A d (equ f g)} → A [ A [ f o A [ α f g o k ] ] ≈ A [ g o A [ α f g o k ] ] ] + b1k f g {d} {k} = ≈-Reasoning.trans-hom A (≈-Reasoning.assoc A) (≈-Reasoning.trans-hom A (≈-Reasoning.car A (b1 f g)) (≈-Reasoning.sym A (≈-Reasoning.assoc A))) field - b2 : {d : Obj A } → {h : Hom A d a } → A [ A [ ( α f g ) o (γ f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] - b3 : {d : Obj A} → {h : Hom A d a } → A [ A [ α f f o δ f f (≈-Reasoning.refl-hom A) ] ≈ id1 A a ] - b4 : {d : Obj A } {h : Hom A d a } {k : Hom A d (equ f g)} → - A [ A [ γ f g ( A [ α f g o k ] ) o ( δ (A [ f o A [ α f g o k ] ] ) (A [ g o A [ α f g o k ] ] ) (f1=gh b1 ) )] ≈ k ] + b2 : {a b d : Obj A} {h : Hom A d a } → (f g : Hom A a b) → A [ A [ ( α f g ) o (γ f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] + b3 : {a b : Obj A} (f g : Hom A a b) → (f=g : A [ f ≈ g ]) → A [ A [ α f g o δ f g f=g ] ≈ id1 A a ] + b4 : {a b d : Obj A} (f g : Hom A a b) → {k : Hom A d (equ f g)} → + A [ A [ γ f g ( A [ α f g o k ] ) o ( δ (A [ f o A [ α f g o k ] ] ) (A [ g o A [ α f g o k ] ] ) (f1=gh (b1 f g) ) )] ≈ k ] β : { d a b : Obj A} → (f g : Hom A a b) → (h : Hom A d a ) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d (equ f g) β {d} {a} {b} f g h eq = A [ γ f g h o δ (A [ f o h ]) (A [ g o h ]) eq ] @@ -247,22 +247,21 @@ -- ---- -lemma-equ1 : {a b : Obj A} (f g : Hom A a b) - → ({a b : Obj A} (f g : Hom A a b) → Equalizer A f g ) → Burroni f g -lemma-equ1 {a} {b} f g eqa = record { +lemma-equ1 : ({a b : Obj A} (f g : Hom A a b) → Equalizer A f g ) → Burroni +lemma-equ1 eqa = record { equ = λ f g → equalizer-c (eqa f g) ; α = λ f g → equalizer (eqa f g) ; γ = λ f g h → k (isEqualizer (eqa f g )) ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 f g h) ; δ = λ {a} {b} f g f=g → k (isEqualizer (eqa {a} {b} f g )) {a} (id1 A a) (f1=g1 f=g _ ) - ; b1 = fe=ge (isEqualizer (eqa f g )) + ; b1 = λ f g → fe=ge (isEqualizer (eqa f g )) ; b2 = lemma-b2 - ; b3 = λ {d} {h} → lemma-b3 f f {h} (≈-Reasoning.refl-hom A) + ; b3 = λ {a } {b} f g f=g → lemma-b3 f g f=g ; b4 = lemma-b4 } where ieqa : {a b : Obj A} (f g : Hom A a b) → IsEqualizer A ( equalizer (eqa f g )) f g ieqa f g = isEqualizer (eqa f g) - lemma-b3 : {a b d : Obj A} (f g : Hom A a b ) { h : Hom A d a } + lemma-b3 : {a b : Obj A} (f g : Hom A a b ) → (f=g : A [ f ≈ g ] ) → A [ A [ equalizer (eqa f g ) o k (isEqualizer (eqa f g)) (id1 A a) (f1=g1 f=g _ ) ] ≈ id1 A a ] lemma-b3 {a} f g f=g = let open ≈-Reasoning (A) in begin @@ -282,25 +281,25 @@ ≈↑⟨ assoc ⟩ g o ( h o equalizer (eqa (f o h) ( g o h ))) ∎ - lemma-b2 : {d : Obj A} {h : Hom A d a} → A [ + lemma-b2 : {a b d : Obj A} {h : Hom A d a} → (f g : Hom A a b) → A [ A [ equalizer (eqa f g) o k (isEqualizer (eqa f g)) (A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 {a} {b} f g h) ] ≈ A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ] - lemma-b2 {d} {h} = let open ≈-Reasoning (A) in + lemma-b2 {a} {b} {d} {h} f g = let open ≈-Reasoning (A) in begin equalizer (eqa f g) o k (isEqualizer (eqa f g)) (h o equalizer (eqa (f o h) (g o h))) (lemma-equ4 {a} {b} f g h) ≈⟨ ek=h (isEqualizer (eqa f g)) ⟩ h o equalizer (eqa (f o h ) ( g o h )) ∎ - lemma-b4 : {d : Obj A} {j : Hom A d (equalizer-c (eqa f g))} → A [ + lemma-b4 : {a b d : Obj A} (f g : Hom A a b) → {j : Hom A d (equalizer-c (eqa f g))} → A [ A [ k (ieqa f g) (A [ A [ equalizer (eqa f g) o j ] o equalizer (eqa (A [ f o A [ equalizer (eqa f g ) o j ] ]) (A [ g o A [ equalizer (eqa f g ) o j ] ])) ]) (lemma-equ4 {a} {b} {d} f g (A [ equalizer (eqa f g) o j ])) o k (ieqa (A [ f o A [ equalizer (eqa f g) o j ] ]) (A [ g o A [ equalizer (eqa f g) o j ] ])) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _))] ≈ j ] -- h = equalizer (eqa f g) o j - lemma-b4 {d} {j} = + lemma-b4 {a} {b} {d} f g {j} = begin - k (ieqa f g) (( h o equalizer (eqa (( f o h )) (( g o h ))) )) (lemma-equ4 {a} {b} {d} f g (h)) + k (ieqa f g) ( h o equalizer (eqa ( f o h ) ( g o h )) ) (lemma-equ4 {a} {b} {d} f g h) o k (ieqa (f o h) ( g o h)) (id1 A _) (f1=g1 (f1=gh (fe=ge (ieqa f g))) (id1 A _)) ≈↑⟨ uniqueness (ieqa f g) ( begin equalizer (eqa f g) o ( k (ieqa f g) (( h o equalizer (eqa ( f o h ) ( g o h )) )) (lemma-equ4 {a} {b} {d} f g h) @@ -333,8 +332,7 @@ -- Bourroni equations gives an Equalizer -- -lemma-equ2 : {a b : Obj A} (f g : Hom A a b) - → ( bur : Burroni f g ) → IsEqualizer A {equ bur f g} {a} {b} (α bur f g ) f g +lemma-equ2 : {a b : Obj A} (f g : Hom A a b) → ( bur : Burroni ) → IsEqualizer A {equ bur f g} {a} {b} (α bur f g ) f g lemma-equ2 {a} {b} f g bur = record { fe=ge = fe=ge1 ; k = k1 ; @@ -348,12 +346,18 @@ k1 : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c k1 {d} h fh=gh = β bur {d} {a} {b} f g h fh=gh fe=ge1 : A [ A [ f o (α bur f g ) ] ≈ A [ g o (α bur f g ) ] ] - fe=ge1 = b1 bur + fe=ge1 = b1 bur f g ek=h1 : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → A [ A [ (α bur f g ) o k1 {d} h eq ] ≈ h ] ek=h1 {d} {h} {eq} = let open ≈-Reasoning (A) in begin α bur f g o k1 h eq - ≈⟨ {!!} ⟩ + ≈⟨ assoc ⟩ + (α bur f g o γ bur f g h) o δ bur (f o h) (g o h) eq + ≈⟨ car (b2 bur f g) ⟩ + ( h o α bur ( f o h ) ( g o h ) ) o δ bur (f o h) (g o h) eq + ≈↑⟨ assoc ⟩ + h o α bur (f o h) (g o h) o δ bur (f o h) (g o h) eq + ≈⟨ cdr ( b3 bur (f o h) (g o h) eq ) ⟩ h o id d ≈⟨ idR ⟩ h @@ -363,10 +367,12 @@ uniqueness1 {d} {h} {eq} {k'} ek=h = let open ≈-Reasoning (A) in begin k1 {d} h eq + ≈⟨⟩ + γ bur f g h o δ bur (f o h) (g o h) eq ≈⟨ {!!} ⟩ - γ bur f g (α bur f g o k' ) o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur))) - ≈⟨ b4 bur ⟩ - k' + γ bur f g (α bur f g o k' ) o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g ))) + ≈⟨ b4 bur f g ⟩ + k' ∎