Mercurial > hg > Members > kono > Proof > category
changeset 1113:918a0cf1c056
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 11 Feb 2024 11:25:40 +0900 |
parents | 0e750446e463 |
children | ce23d2b47c5e |
files | src/Polynominal.agda |
diffstat | 1 files changed, 85 insertions(+), 62 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Polynominal.agda Fri Nov 24 08:49:21 2023 +0900 +++ b/src/Polynominal.agda Sun Feb 11 11:25:40 2024 +0900 @@ -4,7 +4,7 @@ open import Category open import CCC open import Level -open import HomReasoning +open import HomReasoning open import Definitions open import Relation.Nullary open import Data.Empty @@ -36,25 +36,25 @@ -- open Functor - open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) open import Relation.Binary.PropositionalEquality hiding ( [_] ; resp ) renaming ( sym to ≡sym ) data _H≈_ {a b c d : Obj A } ( x : Hom A a b ) (y : Hom A c d ) : Set ( c₁ ⊔ c₂ ⊔ ℓ) where feq : a ≡ c → b ≡ d → (z : Hom A a b) → z ≅ y → A [ x ≈ z ] → x H≈ y data φ {a ⊤ : Obj A } ( x : Hom A ⊤ a ) : {b c : Obj A } → Hom A b c → Set ( c₁ ⊔ c₂ ⊔ ℓ) where - i : {b c : Obj A} (k : Hom A b c ) → φ x k + i : {b c : Obj A} (k : Hom A b c ) → φ x k ii : φ x {⊤} {a} x - iii : {b c' c'' : Obj A } { f : Hom A b c' } { g : Hom A b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x {b} {c' ∧ c''} < f , g > + iii : {b c' c'' : Obj A } { f : Hom A b c' } { g : Hom A b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x {b} {c' ∧ c''} < f , g > iv : {b c d : Obj A } { f : Hom A d c } { g : Hom A b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ∙ g ) v : {b c' c'' : Obj A } { f : Hom A (b ∧ c') c'' } (ψ : φ x f ) → φ x {b} {c'' <= c'} ( f * ) - + α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) α = < π ∙ π , < π' ∙ π , π' > > - + -- genetate (a ∧ b) → c proof from proof b → c with assumption a -- from page. 51 - + k : {a ⊤ b c : Obj A } → ( x∈a : Hom A ⊤ a ) → {z : Hom A b c } → ( y : φ {a} x∈a z ) → Hom A (a ∧ b) c k x∈a {k} (i _) = k ∙ π' k x∈a ii = π @@ -62,7 +62,7 @@ k x∈a (iv ψ χ ) = k x∈a ψ ∙ < π , k x∈a χ > k x∈a (v ψ ) = ( k x∈a ψ ∙ α ) * - toφ : {a ⊤ b c : Obj A } → ( x∈a : Hom A ⊤ a ) → (z : Hom A b c ) → φ {a} x∈a z + toφ : {a ⊤ b c : Obj A } → ( x∈a : Hom A ⊤ a ) → (z : Hom A b c ) → φ {a} x∈a z toφ {a} {⊤} {b} {c} x∈a z = i z -- The Polynominal arrow -- λ term in A @@ -75,40 +75,63 @@ record Poly (a c b : Obj A ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where field - x : Hom A 1 a + x : Hom A 1 a + f : Hom A b c + phi : φ x {b} {c} f + + record Polym {a : Obj A} (x : Hom A 1 a) (b c : Obj A ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where + field f : Hom A b c phi : φ x {b} {c} f + pid : {a : Obj A} (x : Hom A 1 a) → (c : Obj A) → Polym x c c + pid {a} x c = record { f = id1 A c ; phi = i (id1 A c) } + + pcomp : {a : Obj A} (x : Hom A 1 a) { b c d : Obj A } ( f : Polym x c d ) → (g : Polym x b c) → Polym x b d + pcomp {a} x {b} {c} {d} f g = record { f = Polym.f f ∙ Polym.f g ; phi = iv (i (Polym.f f)) (i (Polym.f g)) } + + data P≈ {a : Obj A} (x : Hom A 1 a) : { b c : Obj A } ( f g : Polym x b c ) → Set ( c₁ ⊔ c₂ ⊔ ℓ) where + p-refl : { b c : Obj A} {f : Polym x b c } → P≈ x f f + p-sym : { b c : Obj A} {f g : Polym x b c } → P≈ x f g → P≈ x g f + p-trans : { b c : Obj A} {χ ψ φ : Polym x b c} → P≈ x χ ψ → P≈ x ψ φ → P≈ x χ φ + p-comp : { b c d : Obj A} {g : Polym x c d } {f : Polym x b c } {h : Polym x b d} + → A [ Polym.f g ∙ Polym.f f ≈ Polym.f h ] → P≈ x (pcomp x g f) h + p-resp : { b c d : Obj A} {ψ ψ' : Polym x c d } {χ χ' : Polym x b c} + → P≈ x χ χ' → P≈ x ψ ψ' + → P≈ x (pcomp x ψ χ) (pcomp x ψ' χ') + p-idr : { c d : Obj A} {ψ : Polym x c d } → P≈ x (pcomp x ψ (pid x _)) ψ + p-idl : { c d : Obj A} {ψ : Polym x c d } → P≈ x (pcomp x (pid x _) ψ) ψ + p-assoc : { b c d e : Obj A} (χ : Polym x d e) (ψ : Polym x c d ) (φ : Polym x b c ) + → P≈ x (pcomp x χ (pcomp x ψ φ ) ) (pcomp x (pcomp x χ ψ) φ ) + + + PolyC : {a : Obj A} (x : Hom A 1 a) → Category c₁ (c₁ ⊔ c₂ ⊔ ℓ) (c₁ ⊔ c₂ ⊔ ℓ) + PolyC {a} x = record { + Obj = Obj A ; + Hom = λ b c → Polym x b c ; + _o_ = λ {b} {c} {d} f g → pcomp x f g ; + _≈_ = λ f g → P≈ x f g ; + Id = λ{b} → pid x b ; + isCategory = record { + isEquivalence = record {refl = p-refl ; trans = p-trans ; sym = p-sym } ; + identityL = p-idl ; + identityR = p-idr ; + o-resp-≈ = p-resp ; + associative = λ {b c d e f g h} → p-assoc f g h + } + } + + -- an assuption needed in k x phi ≈ k x phi' - -- k x (i x) ≈ k x ii - postulate + -- k x (i x) ≈ k x ii + postulate xf : {a b c : Obj A } → ( x : Hom A 1 a ) → {f : Hom A b c } → ( fp : φ {a} x f ) → A [ k x (i f) ≈ k x fp ] - -- ( x ∙ π' ) ≈ π - -- + -- ( x ∙ π' ) ≈ π + -- -- this is justified equality f ≈ g in A[x] is used in f ∙ < x , id1 A _> ≈ f ∙ < x , id1 A _> -- ( x ∙ π' ) ∙ < x , id1 A _ > ≈ π ∙ < x , id1 A _ > - -- - -- Subcategory of A without x - -- - -- Since A is CCC, ∀ f : Hom A b c , φ x {b} {c} (FMap F f) is an arrow of CCC A. - -- - - -- - -- If no x in SA (Subcategory of CCC A), we may have xf. - -- - record SA {a ⊤ : Obj A } ( x : Hom A ⊤ a ) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ) where - field - F : Functor A A - CF : CCCFunctor A A C C F - FObj-iso : (x : Obj A) → FObj F x ≡ x - without-x : {b c : Obj A} → (f : Hom A b c) → ¬ ( FMap F f H≈ x ) - - xf-in-SA : {a ⊤ : Obj A } ( x : Hom A ⊤ a ) → (sa : SA x) → - {b c : Obj A } → {f : Hom A b c } → ( fp : φ {a} x (FMap (SA.F sa) f) ) → Set ℓ - xf-in-SA {a} {⊤} x sa {b} {c} {f} fp = A [ k x (i (FMap (SA.F sa) f)) ≈ k x fp ] - -- since we have A[x] now, we can proceed the proof on p.64 in some possible future -- @@ -119,19 +142,19 @@ record Functional-completeness {a b c : Obj A} ( p : Poly a c b ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where x = Poly.x p - field + field fun : Hom A (a ∧ b) c fp : A [ fun ∙ < x ∙ ○ b , id1 A b > ≈ Poly.f p ] - uniq : ( f : Hom A (a ∧ b) c) → A [ f ∙ < x ∙ ○ b , id1 A b > ≈ Poly.f p ] + uniq : ( f : Hom A (a ∧ b) c) → A [ f ∙ < x ∙ ○ b , id1 A b > ≈ Poly.f p ] → A [ f ≈ fun ] -- ε form - -- f ≡ λ (x ∈ a) → φ x , ∃ (f : b <= a) → f ∙ x ≈ φ x - record Fc {a b : Obj A } ( φ : Poly a b 1 ) + -- f ≡ λ (x ∈ a) → φ x , ∃ (f : b <= a) → f ∙ x ≈ φ x + record Fc {a b : Obj A } ( φ : Poly a b 1 ) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where field - sl : Hom A a b - g : Hom A 1 (b <= a) + sl : Hom A a b + g : Hom A 1 (b <= a) g = ( sl ∙ π' ) * field isSelect : A [ ε ∙ < g , Poly.x φ > ≈ Poly.f φ ] @@ -157,21 +180,21 @@ ki x _ (iii {_} {_} {_} {f₁}{ f₂} fp₁ fp₂ ) = begin < f₁ , f₂ > ∙ π' ≈⟨ IsCCC.distr-π isCCC ⟩ < f₁ ∙ π' , f₂ ∙ π' > ≈⟨ π-cong (ki x f₁ fp₁ ) (ki x f₂ fp₂ ) ⟩ - k x (iii fp₁ fp₂ ) ∎ + k x (iii fp₁ fp₂ ) ∎ ki x _ (iv {_} {_} {_} {f₁} {f₂} fp fp₁) = begin (f₁ ∙ f₂ ) ∙ π' ≈↑⟨ assoc ⟩ f₁ ∙ ( f₂ ∙ π') ≈↑⟨ cdr (IsCCC.e3b isCCC) ⟩ f₁ ∙ ( π' ∙ < π , (f₂ ∙ π' ) >) ≈⟨ assoc ⟩ (f₁ ∙ π' ) ∙ < π , (f₂ ∙ π' ) > ≈⟨ resp (π-cong refl-hom (ki x _ fp₁ )) (ki x _ fp ) ⟩ k x fp ∙ < π , k x fp₁ > ≈⟨⟩ - k x (iv fp fp₁ ) ∎ + k x (iv fp fp₁ ) ∎ ki x _ (v {_} {_} {_} {f} fp) = begin (f *) ∙ π' ≈⟨ distr-* ⟩ ( f ∙ < π' ∙ π , π' > ) * ≈↑⟨ *-cong (cdr (IsCCC.e3b isCCC)) ⟩ ( f ∙ ( π' ∙ < π ∙ π , < π' ∙ π , π' > > ) ) * ≈⟨ *-cong assoc ⟩ ( (f ∙ π') ∙ < π ∙ π , < π' ∙ π , π' > > ) * ≈⟨ *-cong ( car ( ki x _ fp )) ⟩ ( k x fp ∙ < π ∙ π , < π' ∙ π , π' > > ) * ≈⟨⟩ - k x (v fp ) ∎ + k x (v fp ) ∎ k-cong : {a b c : Obj A} → (f g : Poly a c b ) → A [ Poly.f f ≈ Poly.f g ] → A [ k (Poly.x f) (Poly.phi f) ≈ k (Poly.x g) (Poly.phi g) ] @@ -179,20 +202,20 @@ k (Poly.x f) (Poly.phi f) ≈↑⟨ ki (Poly.x f) (Poly.f f) (Poly.phi f) ⟩ Poly.f f ∙ π' ≈⟨ car f=f ⟩ Poly.f g ∙ π' ≈⟨ ki (Poly.x g) (Poly.f g) (Poly.phi g) ⟩ - k (Poly.x g) (Poly.phi g) ∎ + k (Poly.x g) (Poly.phi g) ∎ -- proof in p.59 Lambek -- -- (ψ : Poly a c b) is basically λ x.ψ(x). To use x from outside as a ψ(x), apply x ψ will work. -- Instead of replacing x in Poly.phi ψ, we can use simple application with this fuctional completeness -- in the internal language of Topos. - -- - functional-completeness : {a b c : Obj A} ( p : Poly a c b ) → Functional-completeness p + -- + functional-completeness : {a b c : Obj A} ( p : Poly a c b ) → Functional-completeness p functional-completeness {a} {b} {c} p = record { fun = k (Poly.x p) (Poly.phi p) ; fp = fc0 (Poly.x p) (Poly.f p) (Poly.phi p) ; uniq = λ f eq → uniq (Poly.x p) (Poly.f p) (Poly.phi p) f eq - } where + } where fc0 : {a b c : Obj A} → (x : Hom A 1 a) (f : Hom A b c) (phi : φ x {b} {c} f ) → A [ k x phi ∙ < x ∙ ○ b , id1 A b > ≈ f ] fc0 {a} {b} {c} x f' phi with phi @@ -200,18 +223,18 @@ (s ∙ π') ∙ < ( x ∙ ○ b ) , id1 A b > ≈↑⟨ assoc ⟩ s ∙ (π' ∙ < ( x ∙ ○ b ) , id1 A b >) ≈⟨ cdr (IsCCC.e3b isCCC ) ⟩ s ∙ id1 A b ≈⟨ idR ⟩ - s ∎ + s ∎ ... | ii = begin π ∙ < ( x ∙ ○ b ) , id1 A b > ≈⟨ IsCCC.e3a isCCC ⟩ x ∙ ○ b ≈↑⟨ cdr (e2 ) ⟩ x ∙ id1 A b ≈⟨ idR ⟩ - x ∎ + x ∎ ... | iii {_} {_} {_} {f} {g} y z = begin < k x y , k x z > ∙ < (x ∙ ○ b ) , id1 A b > ≈⟨ IsCCC.distr-π isCCC ⟩ < k x y ∙ < (x ∙ ○ b ) , id1 A b > , k x z ∙ < (x ∙ ○ b ) , id1 A b > > ≈⟨ π-cong (fc0 x f y ) (fc0 x g z ) ⟩ < f , g > ≈⟨⟩ - f' ∎ + f' ∎ ... | iv {_} {_} {d} {f} {g} y z = begin (k x y ∙ < π , k x z >) ∙ < ( x ∙ ○ b ) , id1 A b > ≈↑⟨ assoc ⟩ k x y ∙ ( < π , k x z > ∙ < ( x ∙ ○ b ) , id1 A b > ) ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩ @@ -222,7 +245,7 @@ k x y ∙ ( < (x ∙ ○ d) ∙ g , id1 A d ∙ g > ) ≈↑⟨ cdr (IsCCC.distr-π isCCC) ⟩ k x y ∙ ( < x ∙ ○ d , id1 A d > ∙ g ) ≈⟨ assoc ⟩ (k x y ∙ < x ∙ ○ d , id1 A d > ) ∙ g ≈⟨ car (fc0 x f y ) ⟩ - f ∙ g ∎ + f ∙ g ∎ ... | v {_} {_} {_} {f} y = begin ( (k x y ∙ < π ∙ π , < π' ∙ π , π' > >) *) ∙ < x ∙ (○ b) , id1 A b > ≈⟨ IsCCC.distr-* isCCC ⟩ ( (k x y ∙ < π ∙ π , < π' ∙ π , π' > >) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > ) * ≈⟨ IsCCC.*-cong isCCC ( begin @@ -243,42 +266,42 @@ k x y ∙ < x ∙ (○ b ∙ π ) , < π , π' > > ≈⟨ cdr (π-cong (cdr (e2)) (IsCCC.π-id isCCC) ) ⟩ k x y ∙ < x ∙ ○ _ , id1 A _ > ≈⟨ fc0 x f y ⟩ f ∎ ) ⟩ - f * ∎ + f * ∎ -- -- f ∙ < x ∙ ○ b , id1 A b > ≈ f → f ≈ k x (phi p) - -- + -- uniq : {a b c : Obj A} → (x : Hom A 1 a) (f : Hom A b c) (phi : φ x {b} {c} f ) (f' : Hom A (a ∧ b) c) → A [ f' ∙ < x ∙ ○ b , id1 A b > ≈ f ] → A [ f' ≈ k x phi ] uniq {a} {b} {c} x f phi f' fx=p = sym (begin k x phi ≈↑⟨ ki x f phi ⟩ k x {f} (i _) ≈↑⟨ car fx=p ⟩ k x {f' ∙ < x ∙ ○ b , id1 A b >} (i _) ≈⟨ trans-hom (sym assoc) (cdr (IsCCC.distr-π isCCC) ) ⟩ -- ( f' ∙ < x ∙ ○ b , id1 A b> ) ∙ π' - f' ∙ k x {< x ∙ ○ b , id1 A b >} (iii (i _) (i _) ) ≈⟨⟩ -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) - f' ∙ < k x (i (x ∙ ○ b)) , k x {id1 A b} (i _) > ≈⟨ cdr (π-cong u2 refl-hom) ⟩ -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) - f' ∙ < k x {x} ii ∙ < π , k x {○ b} (i _) > , k x {id1 A b} (i _) > -- ( f' ∙ < π ∙ < π , (x ∙ ○ b) ∙ π' > , id1 A b ∙ π' > ) - ≈⟨ cdr (π-cong (cdr (π-cong refl-hom (car e2))) idL ) ⟩ + f' ∙ k x {< x ∙ ○ b , id1 A b >} (iii (i _) (i _) ) ≈⟨⟩ -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) + f' ∙ < k x (i (x ∙ ○ b)) , k x {id1 A b} (i _) > ≈⟨ cdr (π-cong u2 refl-hom) ⟩ -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) + f' ∙ < k x {x} ii ∙ < π , k x {○ b} (i _) > , k x {id1 A b} (i _) > -- ( f' ∙ < π ∙ < π , (x ∙ ○ b) ∙ π' > , id1 A b ∙ π' > ) + ≈⟨ cdr (π-cong (cdr (π-cong refl-hom (car e2))) idL ) ⟩ f' ∙ < π ∙ < π , (○ b ∙ π' ) > , π' > ≈⟨ cdr (π-cong (IsCCC.e3a isCCC) refl-hom) ⟩ f' ∙ < π , π' > ≈⟨ cdr (IsCCC.π-id isCCC) ⟩ f' ∙ id1 A _ ≈⟨ idR ⟩ f' ∎ ) where -- x ∙ ○ b is clearly Polynominal or assumption xf u2 : k x {x ∙ ○ b} (i _) ≈ k x {x} ii ∙ < π , k x {○ b} (i _) > -- (x ∙ (○ b)) ∙ π' ≈ π ∙ < π , (○ b) ∙ π' > - u2 = ki x (x ∙ ○ b) (iv ii (i _)) + u2 = ki x (x ∙ ○ b) (iv ii (i _)) -- functional completeness ε form -- -- g : Hom A 1 (b <= a) fun : Hom A (a ∧ 1) c -- fun * ε ∙ < g ∙ π , π' > -- a -> d <= b <-> (a ∧ b ) -> d - -- + -- -- fun ∙ < x ∙ ○ b , id1 A b > ≈ Poly.f p -- (ε ∙ < g ∙ π , π' >) ∙ < x ∙ ○ b , id1 A b > ≈ Poly.f p -- could be simpler - FC : {a b : Obj A} → (φ : Poly a b 1 ) → Fc {a} {b} φ + FC : {a b : Obj A} → (φ : Poly a b 1 ) → Fc {a} {b} φ FC {a} {b} φ = record { - sl = k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a > + sl = k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a > ; isSelect = isSelect - ; isUnique = uniq + ; isUnique = uniq } where π-exchg = IsCCC.π-exchg isCCC fc0 : {b c : Obj A} (p : Poly b c 1) → A [ k (Poly.x p ) (Poly.phi p) ∙ < Poly.x p ∙ ○ 1 , id1 A 1 > ≈ Poly.f p ] @@ -340,7 +363,7 @@ (ε ∙ < f ∙ π , π' > ) ∙ id1 A (1 ∧ a) ≈⟨ idR ⟩ ε ∙ < f ∙ π , π' > ∎ ) ⟩ ( ε ∙ < A [ f o π ] , π' > ) * ≈⟨ IsCCC.e4b isCCC ⟩ - f ∎ + f ∎