Mercurial > hg > Members > kono > Proof > category
changeset 142:94796ddb9570
on going...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Aug 2013 18:02:45 +0900 |
parents | 4a362cf32a74 |
children | bbaaca9b21ce |
files | monoid-monad.agda |
diffstat | 1 files changed, 13 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/monoid-monad.agda Tue Aug 13 16:16:01 2013 +0900 +++ b/monoid-monad.agda Tue Aug 13 18:02:45 2013 +0900 @@ -4,6 +4,7 @@ open import Level module monoid-monad {c c₁ c₂ ℓ : Level} { Mono : Monoid c ℓ} where +open import Algebra.Structures open import HomReasoning open import cat-utility open import Category.Cat @@ -76,8 +77,17 @@ open NTrans -Lemma-MM31 : ( λ x → ((Mono ∙ ε Mono) (proj₁ x) , proj₂ x )) ≡ ( λ x → x ) -Lemma-MM31 = ? +Lemma-MM32 : ∀{ℓ} {a : Set ℓ } -> {f g : a -> a } -> {x : a } -> ( f ≡ g ) -> ( ( λ x → f x ) ≡ ( λ x → g x ) ) +Lemma-MM32 eq = cong ( \f -> \x -> f x ) eq + +Lemma-MM33 : {a : Level} {b : Level} {A : Set a} {B : A → Set b} {x : Σ A B } → (((proj₁ x) , proj₂ x ) ≡ x ) +Lemma-MM33 = _≡_.refl + +Lemma-M-34 : ( x : Carrier Mono ) -> _≈_ Mono ((_∙_ Mono (ε Mono) x)) x +Lemma-M-34 = proj₁ ( IsMonoid.identity ( isMonoid Mono ) ) + +Lemma-MM31 : ( a : Obj ( Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) ) -> {x : FObj T a } → (((Mono ∙ ε Mono) (proj₁ x) , proj₂ x ) ≡ x ) +Lemma-MM31 a = {!!} MonoidMonad : Monad (Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) T η μ MonoidMonad = record { @@ -94,7 +104,7 @@ TMap μ a o TMap η ( FObj T a ) ≈⟨⟩ ( λ x → ((Mono ∙ ε Mono) (proj₁ x) , proj₂ x )) - ≈⟨ Lemma-MM31 ⟩ + ≈⟨ {!!} ⟩ ( λ x → x ) ≈⟨⟩ Id {_} {_} {_} {A} (FObj T a)