Mercurial > hg > Members > kono > Proof > category
changeset 240:964e258e08fb
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 08 Sep 2013 11:54:06 +0900 |
parents | 08afb6ad80c7 |
children | 9e4dc349831e |
files | equalizer.agda |
diffstat | 1 files changed, 26 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Sun Sep 08 06:43:20 2013 +0900 +++ b/equalizer.agda Sun Sep 08 11:54:06 2013 +0900 @@ -38,9 +38,12 @@ α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → {e : Hom A c a } → Hom A c a γ : {a b c d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d c δ : {a b c : Obj A } → {e : Hom A c a } → (f : Hom A a b) → Hom A a c + cong-α : {a b c : Obj A } → {g g' : Hom A a b } → A [ g ≈ g' ] → { α α' : Hom A c a } → A [ α ≈ α' ] + cong-γ : {a _ c d : Obj A } → {h h' : Hom A d a } → A [ h ≈ h' ] → { γ γ' : Hom A d c } → A [ γ ≈ γ' ] + cong-δ : {a b c : Obj A } → {f f' : Hom A a b} → A [ f ≈ f' ] → { δ δ' : Hom A a c } → A [ δ ≈ δ' ] b1 : A [ A [ f o α {a} {b} {c} f g {e} ] ≈ A [ g o α {a} {b} {c} f g {e} ] ] b2 : {d : Obj A } → {h : Hom A d a } → A [ A [ ( α {a} {b} {c} f g {e} ) o (γ {a} {b} {c} f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]){id1 A d} ] ] - b3 : A [ A [ α {a} {b} {a} f f {id1 A a} o δ {a} {b} {a} {id1 A a} f ] ≈ id1 A a ] + b3 : {a b d : Obj A} → (f : Hom A a b ) → {h : Hom A d a } → A [ A [ α {a} {b} {d} f f {h} o δ {a} {b} {d} {h} f ] ≈ id1 A a ] -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ {a} {b} {c} {d} f g ( A [ α {a} {b} {c} f g {e} o k ] ) o ( δ {d} {b} {d} {id1 A d} (A [ f o A [ α {a} {b} {c} f g {e} o k ] ] ) )] ≈ k ] @@ -227,11 +230,20 @@ α = λ {a} {b} {c} f g {e} → equalizer (eqa {a} {b} {c} f g {e} ) ; -- Hom A c a γ = λ {a} {b} {c} {d} f g h → k (eqa f g ) {d} ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) ; -- Hom A c d δ = λ {a} {b} {c} {e} f → k (eqa {a} {b} {c} f f {e} ) (id1 A a) (lemma-equ2 f); -- Hom A a c + cong-α = cong-α1 ; + cong-γ = cong-γ1 ; + cong-δ = cong-δ1 ; b1 = fe=ge (eqa {a} {b} {c} f g {e}) ; b2 = lemma-b2 ; b3 = lemma-b3 ; b4 = lemma-b4 } where + cong-α1 : {a b c : Obj A } → {g g' : Hom A a b } → A [ g ≈ g' ] → { α α' : Hom A c a } → A [ α ≈ α' ] + cong-α1 {a} {b} {c} {g} {g'} eq = let open ≈-Reasoning (A) in {!!} + cong-γ1 : {a _ c d : Obj A } → {h h' : Hom A d a } → A [ h ≈ h' ] → { γ γ' : Hom A d c } → A [ γ ≈ γ' ] + cong-γ1 = {!!} + cong-δ1 : {a b c : Obj A } → {f f' : Hom A a b} → A [ f ≈ f' ] → { δ δ' : Hom A a c } → A [ δ ≈ δ' ] + cong-δ1 = {!!} -- -- e eqa f g f -- c ----------> a ------->b @@ -246,8 +258,8 @@ lemma-equ2 : {a b : Obj A} (f : Hom A a b) → A [ A [ f o id1 A a ] ≈ A [ f o id1 A a ] ] lemma-equ2 f = let open ≈-Reasoning (A) in refl-hom - lemma-b3 : A [ A [ equalizer (eqa f f ) o k (eqa f f) (id1 A a) (lemma-equ2 f) ] ≈ id1 A a ] - lemma-b3 = let open ≈-Reasoning (A) in + lemma-b3 : {a b d : Obj A} (f : Hom A a b ) { h : Hom A d a } → A [ A [ equalizer (eqa f f ) o k (eqa f f) (id1 A a) (lemma-equ2 f) ] ≈ id1 A a ] + lemma-b3 {a} {b} {d} f {h} = let open ≈-Reasoning (A) in begin equalizer (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) ≈⟨ ek=h (eqa f f ) ⟩ @@ -331,19 +343,25 @@ ( h o ( α bur ( f o h ) ( g o h ))) o δ bur {d} {b} {d} {id1 A d} (f o h) ≈↑⟨ assoc ⟩ h o ((( α bur ( f o h ) ( g o h ))) o δ bur {d} {b} {d} {id1 A d} (f o h) ) - ≈⟨ cdr {!!} ⟩ + ≈↑⟨ cdr ( car ( cong-α bur eq)) ⟩ + h o ((( α bur ( f o h ) ( f o h ))) o δ bur {d} {b} {d} {id1 A d} (f o h) ) + ≈⟨ cdr (b3 bur {d} {b} {d} (f o h) {id1 A d} ) ⟩ h o id1 A d - ≈⟨ {!!} ⟩ + ≈⟨ idR ⟩ h ∎ uniqueness1 : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → {k' : Hom A d c } → A [ A [ (α bur f g) o k' ] ≈ h ] → A [ k1 {d} h eq ≈ k' ] uniqueness1 {d} {h} {eq} {k'} ek=h = let open ≈-Reasoning (A) in begin - k1 {d} h eq + k1 {d} h eq ≈⟨⟩ - γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} {id1 A d} (f o h) - ≈⟨ ? ⟩ + γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} {id1 A d} (f o h) + ≈↑⟨ car (cong-γ bur {a} {b} {c} {d} ek=h ) ⟩ + γ bur f g (A [ α bur f g o k' ]) o δ bur {d} {b} {d} {id1 A d} (f o h) + ≈↑⟨ cdr (cong-δ bur {d} {a} {d} (resp {d} {d} {a} {id1 A d} refl-hom ek=h )) ⟩ + γ bur f g (A [ α bur f g o k' ]) o δ bur (A [ f o A [ α bur f g o k' ] ]) + ≈⟨ b4 bur ⟩ k' ∎