Mercurial > hg > Members > kono > Proof > category
changeset 42:9694f93977ca
Functor Identity
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 22 Jul 2013 21:29:26 +0900 |
parents | e9fa5c95eff7 |
children | 5506abc832c7 |
files | category.ind universal-mapping.agda |
diffstat | 2 files changed, 27 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/category.ind Mon Jul 22 19:07:31 2013 +0900 +++ b/category.ind Mon Jul 22 21:29:26 2013 +0900 @@ -205,7 +205,7 @@ $ η(a): a->UF(a)$ put -\[ F(f) = (η(U(b))f)* \] +\[ F(f) = (η(b)f)* \] \[ ε : FU -> 1_B \] \[ ε(b) = (1_{U(b)})* \]
--- a/universal-mapping.agda Mon Jul 22 19:07:31 2013 +0900 +++ b/universal-mapping.agda Mon Jul 22 21:29:26 2013 +0900 @@ -15,7 +15,8 @@ field universalMapping : (a' : Obj A) ( b' : Obj B ) -> { f : Hom A a' (FObj U b') } -> A [ A [ FMap U ( f * ) o η a' ] ≈ f ] - + unique-universalMapping : (a' : Obj A) ( b' : Obj B ) -> ( f : Hom A a' (FObj U b') ) -> ( g : Hom B (F a') b') -> + A [ A [ FMap U g o η a' ] ≈ f ] -> B [ f * ≈ g ] record UniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) @@ -102,9 +103,29 @@ UniversalMapping A B U F η -> Functor A B FunctorF A B U F η um = record { FObj = F; - FMap = \f -> (_* um) (A [ η (Category.cod A f ) o f ]) ; - isFunctor = isFunctor1 + FMap = myFMap ; + isFunctor = myIsFunctor } where - isFunctor1 : ? - isFunctor1 = ? + myFMap : {a b : Obj A} -> Hom A a b -> Hom B (F a) (F b) + myFMap f = (_* um) (A [ η (Category.cod A f ) o f ]) + lemma-id-1 : {a : Obj A} -> A [ A [ FMap U (Id {_} {_} {_} {B} (F a)) o η a ] ≈ (A [ (η a) o (Id {_} {_} {_} {A} a) ]) ] + lemma-id-1 {a} = let open ≈-Reasoning (A) in + begin + A [ FMap U (Id {_} {_} {_} {B} (F a)) o η a ] + ≈⟨ ( car ( IsFunctor.identity ( isFunctor U ))) ⟩ + A [ (Id {_} {_} {_} {A} (FObj U ( F a )) ) o η a ] + ≈⟨ idL ⟩ + η a + ≈⟨ sym idR ⟩ + (A [ (η a) o (Id {_} {_} {_} {A} a) ]) + ∎ + lemma-id : {a : Obj A} → B [ ( (_* um) (A [ (η a) o (Id {_} {_} {_} {A} a)] )) ≈ (Id {_} {_} {_} {B} (F a)) ] + lemma-id {a} = ( IsUniversalMapping.unique-universalMapping ( isUniversalMapping um ) ) + a (F a) ((A [ (η a) o (Id {_} {_} {_} {A} a)] )) ((Id {_} {_} {_} {B} (F a))) lemma-id-1 + myIsFunctor : IsFunctor A B F myFMap + myIsFunctor = + record { ≈-cong = {!!} + ; identity = lemma-id + ; distr = {!!} + }