Mercurial > hg > Members > kono > Proof > category
changeset 551:97b98b81e990
fix ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 06 Apr 2017 04:15:57 +0900 |
parents | c0078b03201c |
children | 09b1f66f7d7c |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 15 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Tue Apr 04 13:51:48 2017 +0900 +++ b/SetsCompleteness.agda Thu Apr 06 04:15:57 2017 +0900 @@ -176,9 +176,16 @@ open snat +snmeq : { c₂ : Level } { I OC : Set c₂ } { SO : OC → Set c₂ } { SM : { i j : OC } → (f : I )→ SO i → SO j } + ( s t : snat SO SM ) → ( i : OC ) → + { snmapsi snmapti : SO i } → snmapsi ≡ snmapti → SO i +snmeq s t i {pi} {.pi} refl = pi + snat1 : { c₂ : Level } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I )→ sobj i → sobj j ) - ( snm : ( i : OC ) → sobj i ) → (( snm1 : ( i : OC ) → sobj i ) ( i j : OC ) → (f : I ) → smap f ( snm1 i ) ≡ snm1 j ) → snat sobj smap -snat1 SO SM snm eq = record { snmap = λ i → snm i ; sncommute = λ {i} {j} f → eq snm i j f } + ( s t : snat sobj smap ) + ( eq1 : ( i : OC ) → snmap s i ≡ snmap t i ) → + (( i j : OC ) → (f : I ) → smap f (snmeq s t i (eq1 i) ) ≡ (snmeq s t j (eq1 j) )) → snat sobj smap +snat1 SO SM s t eq1 eqcomm = record { snmap = λ i → snmeq s t i (eq1 i); sncommute = λ {i} {j} f → eqcomm i j f } ≡cong2 : { c : Level } { A B C : Set c } { a a' : A } { b b' : B } ( f : A → B → C ) → a ≡ a' @@ -192,12 +199,10 @@ → ( ( i j : OC ) ( f : I ) → SMap {i} {j} f ( snmap s i ) ≡ snmap s j ) → ( ( i j : OC ) ( f : I ) → SMap {i} {j} f ( snmap t i ) ≡ snmap t j ) → s ≡ t -snat-cong {_} {I} {OC} SO SM {s} {t} eq1 eq2 eq3 = ≡cong2 ( λ x y → snat1 SO SM x y ) - ( extensionality Sets ( λ i → eq1 i ) ) - ( extensionality Sets ( λ snm → +snat-cong {_} {I} {OC} SO SM {s} {t} eq1 eq2 eq3 = ≡cong ( λ x → snat1 SO SM s t eq1 x ) ( extensionality Sets ( λ i → ( extensionality Sets ( λ j → - ( extensionality Sets ( λ f → irr2 snm i j f ( eq2s i j f (eq1 i) snm (eq2 i j f ) ) {!!} )))))))) + ( extensionality Sets ( λ f → irr2 (λ i → snmeq s t i (eq1 i) )i j f ( eq2s i j f (eq1 i) (λ i → snmeq s t i (eq1 i) ){!!} {!!} (eq2 i j f ) ) {!!} )))))) where eq2s1 : { i j : OC } { f : I } → {si : SO i} { sj : SO j } ( snm : ( i : OC ) → SO i ) → ( si ≡ snm i ) → ( sj ≡ snm j ) → SM {i} {j} f si ≡ sj → SM f ( snm i) ≡ snm j @@ -213,8 +218,10 @@ open import Relation.Binary.PropositionalEquality open ≡-Reasoning eq2s : ( i j : OC ) ( f : I ) → ( snmap s i ≡ snmap t i ) → - ( snm : ( i : OC ) → SO i ) → SM {i} {j} f ( snmap s i ) ≡ snmap s j → SM f ( snm i) ≡ snm j - eq2s i j f eq1 snm eq2 = eq2s1 snm {!!} {!!} eq2 + ( snm : ( i : OC ) → SO i ) + → snmap s i ≡ snm i → snmap s j ≡ snm j + → SM {i} {j} f ( snmap s i ) ≡ snmap s j → SM f ( snm i) ≡ snm j + eq2s i j f eq1 snm eq2 eq3 eq4 = eq2s1 snm eq2 eq3 eq4 irr3 : { i j : OC } { f : I } → {snmapsi : SO i } → {snmapsj : SO j } → ( es et : SM f ( snmapsi ) ≡ snmapsj ) → es ≡ et irr3 refl refl = refl