Mercurial > hg > Members > kono > Proof > category
changeset 1108:9914aa88b8f5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 20 Jul 2023 11:49:01 +0900 |
parents | 4a6d3d27a9fb |
children | 71049ed05151 |
files | src/CCCMonoidal.agda |
diffstat | 1 files changed, 118 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/CCCMonoidal.agda Thu Jul 20 11:49:01 2023 +0900 @@ -0,0 +1,118 @@ +open import Level +open import Category +open import CCC +module CCCMonoidal {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( c : CCC A ) where + +open import HomReasoning +open import cat-utility +open import Data.Product renaming (_×_ to _/\_ ) hiding ( <_,_> ) +open import Category.Constructions.Product +open import Relation.Binary.PropositionalEquality as ER hiding ( [_] ) + +open Functor +open import monoidal + +open CCC.CCC c +open CCC.IsCCC isCCC hiding ( _×_ ) + +CCCTensorProduct : Functor ( A × A ) A +CCCTensorProduct = record { + FObj = λ x → proj₁ x ∧ proj₂ x + ; FMap = λ {x : Obj ( A × A ) } {y} f → < A [ proj₁ f o π ] , A [ proj₂ f o π' ] > + ; isFunctor = record { + ≈-cong = cc00 + ; identity = cc01 + ; distr = cc02 + } + } where + cc00 : {a b : Obj (A × A)} {f g : Hom (A × A) a b } → (A × A) [ f ≈ g ] → + A [ < A [ proj₁ f o π ] , A [ proj₂ f o π' ] > ≈ < A [ proj₁ g o π ] , A [ proj₂ g o π' ] > ] + cc00 {a} {b} {f} {g} eq = begin + < proj₁ f o π , proj₂ f o π' > ≈⟨ π-cong (car (proj₁ eq)) (car (proj₂ eq)) ⟩ + < proj₁ g o π , proj₂ g o π' > ∎ where open ≈-Reasoning A + cc01 : {a : Obj (A × A)} → A [ < A [ proj₁ (id1 (A × A) a) o π ] , A [ proj₂ (id1 (A × A) a) o π' ] > ≈ id1 A (proj₁ a ∧ proj₂ a) ] + cc01 {a} = begin + < proj₁ (id1 (A × A) a) o π , proj₂ (id1 (A × A) a) o π' > ≈⟨ π-cong idL idL ⟩ + < π , π' > ≈⟨ π-id ⟩ + id1 A (proj₁ a ∧ proj₂ a) ∎ where open ≈-Reasoning A + cc02 : {a b c : Obj (A × A)} {f : Hom (A × A) a b} {g : Hom (A × A) b c} → + A [ < A [ proj₁ ((A × A) [ g o f ]) o π ] , A [ proj₂ ((A × A) [ g o f ]) o π' ] > + ≈ A [ < A [ proj₁ g o π ] , A [ proj₂ g o π' ] > o < A [ proj₁ f o π ] , A [ proj₂ f o π' ] > ] ] + cc02 {a} {b} {c} {f} {g} = begin + < proj₁ ((A × A) [ g o f ]) o π , proj₂ ((A × A) [ g o f ]) o π' > ≈↑⟨ π-cong assoc assoc ⟩ + < proj₁ g o (proj₁ f o π ) , proj₂ g o ( proj₂ f o π' ) > ≈↑⟨ π-cong (cdr e3a) (cdr e3b) ⟩ + < proj₁ g o (π o < proj₁ f o π , proj₂ f o π' >) , proj₂ g o ( π' o < proj₁ f o π , proj₂ f o π' >) > ≈⟨ π-cong assoc assoc ⟩ + < (proj₁ g o π) o < proj₁ f o π , proj₂ f o π' > , (proj₂ g o π') o < proj₁ f o π , proj₂ f o π' > > ≈↑⟨ distr-π ⟩ + < proj₁ g o π , proj₂ g o π' > o < proj₁ f o π , proj₂ f o π' > + ∎ where open ≈-Reasoning A + +MonoidalCCC : Monoidal A +MonoidalCCC = record { + m-i = 1 ; + m-bi = CCCTensorProduct ; + isMonoidal = record { + mα-iso = record { ≅→ = mα→ ; ≅← = mα← ; iso→ = ? ; iso← = ? } ; + mλ-iso = record { ≅→ = mλ→ ; ≅← = mλ← ; iso→ = ? ; iso← = ? } ; + mρ-iso = record { ≅→ = mρ→ ; ≅← = mρ← ; iso→ = ? ; iso← = ? } ; + mα→nat1 = λ f → ? ; + mα→nat2 = λ f → ? ; + mα→nat3 = λ f → ? ; + mλ→nat = λ f → ? ; + mρ→nat = λ f → ? ; + comm-penta = ? ; + comm-unit = ? + } } where + open ≈-Reasoning A + -- associative operations + mα→ : {a b c : Obj A} → Hom A ( ( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) + mα→ = α + mα← : {a b c : Obj A} → Hom A ( a ∧ ( b ∧ c ) ) ( ( a ∧ b ) ∧ c ) + mα← = α' + mλ→ : {a : Obj A} → Hom A ( 1 ∧ a ) a + mλ→ {a} = π' + mλ← : {a : Obj A} → Hom A a ( 1 ∧ a ) + mλ← {a} = < ○ a , id1 A a > + mλiso : {a : Obj A} → A [ A [ mλ← o mλ→ ] ≈ id1 A (1 ∧ a) ] + mλiso = ? + -- (a ∧ One) ⇔ a + mρ→ : {a : Obj A} → Hom A ( a ∧ 1 ) a + mρ→ {a} = π + mρ← : {a : Obj A} → Hom A a ( a ∧ 1 ) + mρ← {a} = < id1 A a , ○ a > + mρiso : {a : Obj A} → A [ A [ mρ← o mρ→ ] ≈ id1 A (a ∧ 1) ] + mρiso = ? + +-- This does not hold in general unlike Sets + +open NTrans + +Monad→MonoidalFunctor : (m : Monad A) → CCCFunctor A A c c (Monad.T m) → MonoidalFunctor MonoidalCCC MonoidalCCC +Monad→MonoidalFunctor m cm = record { + MF = Monad.T m + ; ψ = cc11 + ; isMonodailFunctor = record { + φab = ? + ; associativity = ? + ; unitarity-idr = ? + ; unitarity-idl = ? + } + } where + open ≈-Reasoning A + open CCCFunctor cm + T = Monad.T m + cc11 : Hom A 1 (FObj (Monad.T m) 1) + cc11 = subst (λ k → Hom A 1 k ) (ER.sym f1 ) (id1 A 1 ) + tmap : (x y : Obj A) → Hom A ( FObj (Monad.T m) x ∧ FObj (Monad.T m) y) (FObj (Monad.T m) (x ∧ y)) + tmap x y = A [ cc12 o cc13 ] where + cc12 : Hom A ((((FObj T (FObj T (x ∧ y)) <= (FObj T x ∧ y)) ∧ (FObj T x ∧ y)) <= (x ∧ y)) ∧ (x ∧ y)) (FObj T (x ∧ y)) + cc12 = TMap (Monad.μ m) (x ∧ y) o ( ε {FObj T (FObj T (x ∧ y))} {FObj T x ∧ y} o + ( ε {(FObj T (FObj T (x ∧ y)) <= (FObj T x ∧ y)) ∧ (FObj T x ∧ y) } {x ∧ y} )) + cc13 : Hom A (FObj (Monad.T m) x ∧ FObj (Monad.T m) y) ((((FObj T (FObj T (x ∧ y)) <= (FObj T x ∧ y)) ∧ (FObj T x ∧ y)) <= (x ∧ y)) ∧ (x ∧ y)) + cc13 = < ? , ? > o _* ( ( FMap T ? o π ) o π ) + -- ? o ( _* ? o _* ? ) + -- ? o < (FMap T ? o π ) , (FMap T ? o π' ) > + cc10 : NTrans (A × A) A (Functor● A A MonoidalCCC (Monad.T m)) (Functor⊗ A A MonoidalCCC (Monad.T m)) + cc10 = record { TMap = λ a → tmap (proj₁ a) (proj₂ a) ; isNTrans = record { commute = ? } } + +-- +-- end