Mercurial > hg > Members > kono > Proof > category
changeset 861:9e6e44ae82be
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Apr 2020 13:00:59 +0900 (2020-04-05) |
parents | d3cf372ac8cd |
children | 0c65b4e54d3a |
files | CCCGraph1.agda |
diffstat | 1 files changed, 39 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Sun Apr 05 11:53:00 2020 +0900 +++ b/CCCGraph1.agda Sun Apr 05 13:00:59 2020 +0900 @@ -85,6 +85,18 @@ identityR {_} {_} {iv (x *) < f , f₁ >} = cong₂ (λ j k → iv (x *) < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) identityR {_} {_} {iv f (iv g h)} = refl + open import Data.Empty + open import Relation.Nullary + + assoc-iv : {a b c d : Objs} (x : Arrow c d) (f : Arrows b c) (g : Arrows a b ) → eval (iv x (f ・ g)) ≡ eval (iv x f ・ g) + assoc-iv x (id a) g = refl + assoc-iv x (○ a) g = refl + assoc-iv π < f , f₁ > g = refl + assoc-iv π' < f , f₁ > g = refl + assoc-iv ε < f , f₁ > g = refl + assoc-iv (x *) < f , f₁ > g = refl + assoc-iv x (iv f g) h = {!!} + ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g ==←≡ eq = cong (λ k → eval k ) eq @@ -113,7 +125,33 @@ associative (id a) g h = refl associative (○ a) g h = refl associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h) - associative {a} (iv x f) g h = {!!} + associative {a} (iv π < f , f1 > ) g h = associative f g h + associative {a} (iv π' < f , f1 > ) g h = associative f1 g h + associative {a} (iv ε < f , f1 > ) g h = cong ( λ k → iv ε k ) ( associative < f , f1 > g h ) + associative {a} (iv (x *) < f , f1 > ) g h = cong ( λ k → iv (x *) k ) ( associative < f , f1 > g h ) + associative {a} (iv x (id _)) g h = begin + eval (iv x (id _) ・ (g ・ h)) + ≡⟨⟩ + eval (iv x (g ・ h)) + ≡⟨ assoc-iv x g h ⟩ + eval (iv x g ・ h) + ≡⟨⟩ + eval ((iv x (id _) ・ g) ・ h) + ∎ where open ≡-Reasoning + associative {a} (iv x (○ _)) g h = refl + associative {a} (iv x (iv y f)) g h = begin + eval (iv x (iv y f) ・ (g ・ h)) + ≡⟨ sym (assoc-iv x (iv y f) ( g ・ h)) ⟩ + eval (iv x ((iv y f) ・ (g ・ h))) + ≡⟨ {!!} ⟩ + iv x (eval ((iv y f) ・ (g ・ h))) + ≡⟨ {!!} ⟩ + iv x (eval ((iv y f ・ g ) ・ h)) + ≡⟨ {!!} ⟩ + eval (iv x ((iv y f ・ g ) ・ h)) + ≡⟨ {!!} ⟩ + eval ((iv x (iv y f) ・ g) ・ h) + ∎ where open ≡-Reasoning -- cong ( λ k → iv x k ) (associative f g h) o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → f == g → h == i → (h ・ f) == (i ・ g)