Mercurial > hg > Members > kono > Proof > category
changeset 860:d3cf372ac8cd
give update idempotent
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Apr 2020 11:53:00 +0900 |
parents | ed0b3d2d1037 |
children | 9e6e44ae82be |
files | CCCGraph1.agda |
diffstat | 1 files changed, 15 insertions(+), 51 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Sun Apr 05 11:15:41 2020 +0900 +++ b/CCCGraph1.agda Sun Apr 05 11:53:00 2020 +0900 @@ -51,46 +51,11 @@ eval (iv (f *) (iv g h)) | < t , t₁ > = iv (f *) < t , t₁ > eval (iv f (iv g h)) | iv f1 t = iv f (iv f1 t) - idem-<l> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → f ≡ f1 - idem-<l> refl = refl - - idem-<r> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → g ≡ g1 - idem-<r> refl = refl + refl-<l> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → f ≡ f1 + refl-<l> refl = refl - idem-eval : {a b : Objs } (f : Arrows a b ) → eval (eval f) ≡ eval f - idem-eval (id a) = refl - idem-eval (○ a) = refl - idem-eval < f , f₁ > = cong₂ ( λ j k → < j , k > ) (idem-eval f) (idem-eval f₁) - idem-eval (iv f (id a)) = refl - idem-eval (iv f (○ a)) = refl - idem-eval (iv π < g , g₁ >) = idem-eval g - idem-eval (iv π' < g , g₁ >) = idem-eval g₁ - idem-eval (iv ε < f , f₁ >) = cong₂ ( λ j k → iv ε < j , k > ) (idem-eval f) (idem-eval f₁) - idem-eval (iv (x *) < f , f₁ >) = cong₂ ( λ j k → iv (x *) < j , k > ) (idem-eval f) (idem-eval f₁) - idem-eval (iv f (iv g h)) with eval (iv g h) | idem-eval (iv g h) - idem-eval (iv f (iv g h)) | id a | m = refl - idem-eval (iv f (iv g h)) | ○ a | m = refl - idem-eval (iv π (iv g h)) | < t , t₁ > | m = idem-<l> m - idem-eval (iv π' (iv g h)) | < t , t₁ > | m = idem-<r> m - idem-eval (iv ε (iv g h)) | < t , t₁ > | m = cong ( λ k → iv ε k ) m - idem-eval (iv (f *) (iv g h)) | < t , t₁ > | m = cong ( λ k → iv (f *) k ) m - idem-eval (iv (arrow x) (iv g h)) | iv f1 (id a) | m = cong ( λ k → iv (arrow x) k ) m - idem-eval (iv π (iv g h)) | iv f1 (id a) | m = cong ( λ k → iv π k ) m - idem-eval (iv π' (iv g h)) | iv f1 (id a) | m = cong ( λ k → iv π' k ) m - idem-eval (iv ε (iv g h)) | iv f1 (id a) | m = cong ( λ k → iv ε k ) m - idem-eval (iv (f *) (iv g h)) | iv f1 (id a) | m = cong ( λ k → iv (f *) k ) m - idem-eval (iv (f *) (iv g h)) | iv f1 (○ a) | m = cong ( λ k → iv (f *) k ) m - idem-eval (iv f (iv g h)) | iv π < t , t₁ > | m = {!!} - idem-eval (iv f (iv g h)) | iv π' < t , t₁ > | m = {!!} - idem-eval (iv (arrow x) (iv g h)) | iv ε < t , t₁ > | m = cong ( λ k → iv (arrow x) k ) m - idem-eval (iv π (iv g h)) | iv ε < t , t₁ > | m = cong ( λ k → iv π k ) m - idem-eval (iv π' (iv g h)) | iv ε < t , t₁ > | m = cong ( λ k → iv π' k ) m - idem-eval (iv ε (iv g h)) | iv ε < t , t₁ > | m = cong ( λ k → iv ε k ) m - idem-eval (iv (f *) (iv g h)) | iv ε < t , t₁ > | m = cong ( λ k → iv (f *) k ) m - idem-eval (iv (f *) (iv g h)) | iv (f1 *) < t , t₁ > | m = cong ( λ k → iv (f *) k ) m - idem-eval (iv f (iv g h)) | iv f1 (iv f₁ t) | m = {!!} - -- lemma : eval (iv f ( iv f1 (iv f₁ t))) ≡ iv f ( iv f1 (iv f₁ t)) - -- lemma = {!!} + refl-<r> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → g ≡ g1 + refl-<r> refl = refl _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c id a ・ g = g @@ -110,17 +75,15 @@ identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) == f identityR {a} {.a} {id a} = refl - identityR {a} {.⊤} {○ a} = refl - identityR {a} {.(_ ∧ _)} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) - identityR {a} {b} {iv f (id a)} = refl - identityR {a} {b} {iv f (○ a)} = refl - identityR {a} {b} {iv π < g , g₁ >} = identityR {_} {_} {g} - identityR {a} {b} {iv π' < g , g₁ >} = identityR {_} {_} {g₁} - identityR {a} {b} {iv ε < f , f₁ >} = cong₂ (λ j k → iv ε < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) - identityR {a} {_} {iv (x *) < f , f₁ >} = cong₂ (λ j k → iv (x *) < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) - identityR {a} {b} {iv {c} {d} {e} π (iv g h)} = refl - identityR {a} {b} {iv {c} {d} {e} π' (iv g h)} = refl - identityR {a} {b} {iv {c} {d} {e} f (iv g h)} = refl + identityR {a} {⊤} {○ a} = refl + identityR {_} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) + identityR {_} {_} {iv f (id a)} = refl + identityR {_} {_} {iv f (○ a)} = refl + identityR {_} {_} {iv π < g , g₁ >} = identityR {_} {_} {g} + identityR {_} {_} {iv π' < g , g₁ >} = identityR {_} {_} {g₁} + identityR {_} {_} {iv ε < f , f₁ >} = cong₂ (λ j k → iv ε < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) + identityR {_} {_} {iv (x *) < f , f₁ >} = cong₂ (λ j k → iv (x *) < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) + identityR {_} {_} {iv f (iv g h)} = refl ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g ==←≡ eq = cong (λ k → eval k ) eq @@ -150,7 +113,8 @@ associative (id a) g h = refl associative (○ a) g h = refl associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h) - associative {a} (iv x f) g h = {!!} -- cong ( λ k → iv x k ) (associative f g h) + associative {a} (iv x f) g h = {!!} + -- cong ( λ k → iv x k ) (associative f g h) o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → f == g → h == i → (h ・ f) == (i ・ g) o-resp-≈ f=g h=i = {!!}