Mercurial > hg > Members > kono > Proof > category
changeset 435:9f014f34b988
f=g if equalizer k has right inverse
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 28 Aug 2016 18:59:40 +0900 |
parents | 3fdf0aedc21d |
children | ef37decef1ca |
files | freyd.agda |
diffstat | 1 files changed, 25 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd.agda Sun Mar 27 09:18:01 2016 +0900 +++ b/freyd.agda Sun Aug 28 18:59:40 2016 +0900 @@ -35,8 +35,6 @@ initial : ∀( a : Obj A ) → Hom A i a uniqueness : ( a : Obj A ) → ( f : Hom A i a ) → A [ f ≈ initial a ] - - -- A complete catagory has initial object if it has PreInitial-SmallFullSubcategory open NTrans @@ -47,10 +45,11 @@ initialFromPreInitialFullSubcategory : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) (lim : ( Γ : Functor A A ) → { a0 : Obj A } { u : NTrans A A ( K A A a0 ) Γ } → Limit A A Γ a0 u ) -- completeness + ( equ : {a b c : Obj A} → (f g : Hom A a b) → {e : Hom A c a } → Equalizer A e f g ) (SFS : SmallFullSubcategory A F FMap← ) → (PI : PreInitial A F ) → { a0 : Obj A } → { u : (a : Obj A) → NTrans A A (K A A a) F } → HasInitialObject A a0 -initialFromPreInitialFullSubcategory A F FMap← lim SFS PI {a0} {u} = record { +initialFromPreInitialFullSubcategory A F FMap← lim equ SFS PI {a0} {u} = record { initial = initialArrow ; uniqueness = λ a f → lemma1 a f } where @@ -66,4 +65,26 @@ ≈⟨ {!!} ⟩ f ∎ ) - + -- if equalizer has right inverse, f = g + lemma2 : (a b c : Obj A) ( f g : Hom A a b ) (e : Hom A c a ) (e' : Hom A a c ) ( equ : Equalizer A e f g ) (inv-e : A [ A [ e o e' ] ≈ id1 A a ] ) + -> A [ f ≈ g ] + lemma2 a b c f g e e' equ inv-e = let open ≈-Reasoning (A) in + let open Equalizer in + begin + f + ≈↑⟨ idR ⟩ + f o id1 A a + ≈↑⟨ cdr inv-e ⟩ + f o ( e o e' ) + ≈⟨ assoc ⟩ + ( f o e ) o e' + ≈⟨ car ( fe=ge equ ) ⟩ + ( g o e ) o e' + ≈↑⟨ assoc ⟩ + g o ( e o e' ) + ≈⟨ cdr inv-e ⟩ + g o id1 A a + ≈⟨ idR ⟩ + g + ∎ +