Mercurial > hg > Members > kono > Proof > category
changeset 843:a73acfdef643
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 02 Apr 2020 13:43:43 +0900 |
parents | fa9d5d2b965d |
children | 3b8c1ca0d737 |
files | CCCGraph1.agda |
diffstat | 1 files changed, 20 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Thu Apr 02 12:11:22 2020 +0900 +++ b/CCCGraph1.agda Thu Apr 02 13:43:43 2020 +0900 @@ -65,22 +65,30 @@ identityL {_} {_} {id a} = refl identityL {a} {b} {< f , f₁ >} = refl identityL {_} {_} {iv f f₁} = refl + identityR≡ : {A B : Objs} {f : Arrows A B} → (f ・ id A) ≡ f + identityR≡ {a} {.a} {id a} = refl + identityR≡ {a} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityR≡ {a} {_} {f} ) (identityR≡ {a} {_} {f₁} ) + identityR≡ {a} {b} {iv x (id a)} = refl + identityR≡ {a} {b} {iv π < f , f₁ >} = {!!} + identityR≡ {a} {b} {iv π' < f , f₁ >} = {!!} + identityR≡ {a} {⊤} {iv (○ .(_ ∧ _)) < f , f₁ >} = {!!} + identityR≡ {a} {b} {iv ε < f , f₁ >} = cong ( λ k → iv ε k ) ( identityR≡ {_} {_} {< f , f₁ >} ) + identityR≡ {a} {_} {iv (x *) < f , f₁ >} = cong ( λ k → iv (x *) k ) ( identityR≡ {_} {_} {< f , f₁ >} ) + identityR≡ {a} {b} {iv {a} {c} {d} x (iv {a} {d} {c1} f f₁)} = begin -- cong ( λ k → iv x k ・ id a ) {!!} -- ( identityR {_} {_} {iv f f₁} ) + iv x (iv f f₁) ・ id a + ≡⟨ {!!} ⟩ + iv x ((iv f f₁) ・ id a) + ≡⟨ cong (λ k → iv x k) identityR≡ ⟩ + iv x (iv f f₁) + ∎ where open ≡-Reasoning identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) == f - identityR {a} {_} {id a} = refl - identityR {a} {b} {< f , g >} = cong₂ ( λ j k → < j , k > ) ( identityR {_} {_} {f} ) ( identityR {_} {_} {g} ) - identityR {a} {b} {iv x (id a)} = refl - identityR {a} {b} {iv π < f , f₁ >} = identityR {a} {b} {f} - identityR {a} {b} {iv π' < f , f₁ >} = identityR {a} {b} {f₁} - identityR {a} {⊤} {iv (○ .(_ ∧ _)) < f , f₁ >} = refl - identityR {a} {b} {iv ε < f , f₁ >} = cong ( λ k → iv ε k ) ( identityR {_} {_} {< f , f₁ >} ) - identityR {a} {_} {iv (x *) < f , f₁ >} = cong ( λ k → iv (x *) k ) ( identityR {_} {_} {< f , f₁ >} ) - identityR {a} {b} {iv x (iv f f₁)} = {!!} -- cong ( λ k → iv x k ) ( identityR {_} {_} {iv f f₁} ) - o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → - f == g → h == i → (h ・ f) == (i ・ g) - o-resp-≈ f=g h=i = {!!} + identityR = {!!} associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → (f ・ (g ・ h)) == ((f ・ g) ・ h) associative (id a) g h = refl associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h) associative (iv x f) g h = {!!} -- cong ( λ k → iv x k ) ( associative f g h ) + o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → + f == g → h == i → (h ・ f) == (i ・ g) + o-resp-≈ f=g h=i = {!!}