Mercurial > hg > Members > kono > Proof > category
changeset 224:a9d311cea336
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 05 Sep 2013 11:39:06 +0900 |
parents | 8b3aeba14b5e |
children | 1a9f20917fbd |
files | equalizer.agda |
diffstat | 1 files changed, 28 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Thu Sep 05 04:35:22 2013 +0900 +++ b/equalizer.agda Thu Sep 05 11:39:06 2013 +0900 @@ -49,16 +49,29 @@ open EqEqualizer -f1=g1 : { a b : Obj A } {f g : Hom A a b } → (eq : A [ f ≈ g ] ) → A [ A [ f o id1 A a ] ≈ A [ g o id1 A a ] ] -f1=g1 eq = let open ≈-Reasoning (A) in (resp refl-hom eq ) +f1=g1 : { a b c : Obj A } {f g : Hom A a b } → (eq : A [ f ≈ g ] ) → (h : Hom A c a) → A [ A [ f o h ] ≈ A [ g o h ] ] +f1=g1 eq h = let open ≈-Reasoning (A) in (resp refl-hom eq ) + +f1=gh : { a b c d : Obj A } {f g : Hom A a b } → { e : Hom A c a } → { h : Hom A d c } → + (eq : A [ A [ f o e ] ≈ A [ g o e ] ] ) → A [ A [ f o A [ e o h ] ] ≈ A [ g o A [ e o h ] ] ] +f1=gh {a} {b} {c} {d} {f} {g} {e} {h} eq = let open ≈-Reasoning (A) in + begin + f o ( e o h ) + ≈⟨ assoc ⟩ + (f o e ) o h + ≈⟨ car eq ⟩ + (g o e ) o h + ≈↑⟨ assoc ⟩ + g o ( e o h ) + ∎ equalizer-eq-k : { a b : Obj A } {f g : Hom A a b } → (eq : A [ f ≈ g ] ) → ( eqa : Equalizer A {a} f g) → A [ e eqa ≈ id1 A a ] → - A [ k eqa (id1 A a) (f1=g1 eq) ≈ id1 A a ] + A [ k eqa (id1 A a) (f1=g1 eq (id1 A a)) ≈ id1 A a ] equalizer-eq-k {a} {b} {f} {g} eq eqa e=1 = let open ≈-Reasoning (A) in begin - k eqa (id1 A a) (f1=g1 eq) + k eqa (id1 A a) (f1=g1 eq (id1 A a)) ≈⟨ uniqueness eqa ( begin e eqa o id1 A a ≈⟨ idR ⟩ @@ -70,7 +83,7 @@ ∎ equalizer-eq-e : { a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {a} f g) → (eq : A [ f ≈ g ] ) → - A [ k eqa (id1 A a) (f1=g1 eq) ≈ id1 A a ] → + A [ k eqa (id1 A a) (f1=g1 eq (id1 A a)) ≈ id1 A a ] → A [ e eqa ≈ id1 A a ] equalizer-eq-e {a} {b} {f} {g} eqa eq k=1 = let open ≈-Reasoning (A) in begin @@ -78,7 +91,7 @@ ≈↑⟨ idR ⟩ e eqa o id1 A a ≈↑⟨ cdr k=1 ⟩ - e eqa o k eqa (id1 A a) (f1=g1 eq) + e eqa o k eqa (id1 A a) (f1=g1 eq (id1 A a)) ≈⟨ ek=h eqa ⟩ id1 A a ∎ @@ -347,11 +360,11 @@ ∎ iso-rev : { a b c : Obj A } {f g : Hom A a b } → (eq : A [ f ≈ g ] ) → ( eqa : Equalizer A {c} f g) → Hom A a c -iso-rev {a} {b} {c} {f} {g} eq eqa = k eqa (id1 A a) (f1=g1 eq) +iso-rev {a} {b} {c} {f} {g} eq eqa = k eqa (id1 A a) (f1=g1 eq (id1 A a)) -equalizer-iso-pair : { a b c : Obj A } {f g : Hom A a b } → (eq : A [ f ≈ g ] ) → ( eqa : Equalizer A {c} f g) → +equalizer-iso-pair : { a b c : Obj A } {f g : Hom A a b } → {eq : A [ f ≈ g ] } → ( eqa : Equalizer A {c} f g) → A [ A [ e eqa o iso-rev eq eqa ] ≈ id1 A a ] -equalizer-iso-pair {a} {b} {c} {f} {g} eq eqa = ek=h eqa +equalizer-iso-pair {a} {b} {c} {f} {g} {eq} eqa = ek=h eqa -- Equalizer is unique up to iso @@ -359,27 +372,19 @@ → Hom A c c' --- != id1 A c equalizer-iso {c} eqa eqa' = k eqa' (e eqa) (fe=ge eqa) -f1=gh : { a b c d : Obj A } {f g : Hom A a b } → { e : Hom A c a } → { h : Hom A d c } → - (eq : A [ A [ f o e ] ≈ A [ g o e ] ] ) → A [ A [ f o A [ e o h ] ] ≈ A [ g o A [ e o h ] ] ] -f1=gh {a} {b} {c} {d} {f} {g} {e} {h} eq = let open ≈-Reasoning (A) in - begin - f o ( e o h ) - ≈⟨ assoc ⟩ - (f o e ) o h - ≈⟨ car eq ⟩ - (g o e ) o h - ≈↑⟨ assoc ⟩ - g o ( e o h ) - ∎ - -- -- -- e eqa f g f -- c ----------> a ------->b -- equalizer-iso-eq : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) + { h : Hom A a c } → ( equalizer-iso-pair {a} {b} {c'} (eefeg eqa) ) + → A [ A [ k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e eqa ) (fe=ge eqa) ] ≈ id1 A c ] +equalizer-iso-eq = ? + +equalizer-iso-eq' : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) { h : Hom A a c } → A [ A [ h o e eqa ] ≈ id1 A c ] → A [ A [ k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e eqa ) (fe=ge eqa) ] ≈ id1 A c ] -equalizer-iso-eq {c} {c'} {f} {g} eqa eqa' {h} rev = let open ≈-Reasoning (A) in +equalizer-iso-eq' {c} {c'} {f} {g} eqa eqa' {h} rev = let open ≈-Reasoning (A) in begin k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e eqa ) (fe=ge eqa) ≈↑⟨ idL ⟩