changeset 892:ad0732c51d38

clean up CCCGraph1.agda
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 13 Apr 2020 08:56:52 +0900
parents 2685eaaa8763
children 4a66f48ffee5
files CCCGraph1.agda
diffstat 1 files changed, 14 insertions(+), 216 deletions(-) [+]
line wrap: on
line diff
--- a/CCCGraph1.agda	Mon Apr 13 08:52:35 2020 +0900
+++ b/CCCGraph1.agda	Mon Apr 13 08:56:52 2020 +0900
@@ -94,187 +94,6 @@
    eval (iv (f *) (iv g h)) | < t , t₁ > = iv ((eval f) *) < t , t₁ > 
    eval (iv f (iv g h)) | iv f1 t = iv f (iv f1 t) 
 
-   refl-<l> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c }  → < f , g > ≡ < f1 , g1 > → f ≡ f1
-   refl-<l> refl = refl
-
-   refl-<r> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c }  → < f , g > ≡ < f1 , g1 > → g ≡ g1
-   refl-<r> refl = refl
-
-   idem-eval :  {a b : Objs } (f : Arrows a b ) → eval (eval f) ≡ eval f
-
-   iv-e-arrow : { a : Objs } → {b c : vertex G } → (x : edge G b c  ) ( g : Arrows a (atom b) )
-           → eval (iv (arrow x) g) ≡ iv (arrow x) (eval g)
-   iv-e-arrow x (id (atom _)) = refl
-   iv-e-arrow x (iv f g) with eval (iv f g) 
-   iv-e-arrow x (iv f g) | id (atom _) = refl
-   iv-e-arrow x (iv f g) | iv f₁ t = refl
-   iv-e-ε : { a b c : Objs } → ( g : Arrows a ((c <= b) ∧ b ) )
-           → eval (iv ε g) ≡ iv ε (eval g)
-   iv-e-ε (id _) = refl
-   iv-e-ε < g , g₁ > = refl
-   iv-e-ε (iv f g) with eval (iv f g) 
-   iv-e-ε (iv f g) | id _ = refl
-   iv-e-ε (iv f g) | < t , t₁ > = refl
-   iv-e-ε (iv f g) | iv f₁ t = refl
-   iv-e-* : { a b c d : Objs } → { f : Arrows (d ∧ b) c} → ( g : Arrows a d )
-           → eval (iv (f *) g) ≡ iv ((eval f) *) (eval g)
-   iv-e-* (id a) = refl
-   iv-e-* (○ a) = refl
-   iv-e-* < g , g₁ > = refl
-   iv-e-* (iv f g) with eval (iv f g)
-   iv-e-* (iv f g) | id a = refl
-   iv-e-* (iv f g) | ○ a = refl
-   iv-e-* (iv f g) | < t , t₁ > = refl
-   iv-e-* (iv (f *) g) | iv f₁ t = {!!}
-   iv-e-* (iv f g) | iv f₁ t = {!!}
-
-   iv-e : { a b c : Objs } → (x : Arrow b c ) ( f : Arrows a b) 
-           → { d : Objs } { y : Arrow d b } { g : Arrows a d } → eval f ≡ iv y g 
-           → eval (iv x f) ≡ iv x (eval f)
-   iv-e x (id a) ()
-   iv-e x (○ a) ()
-   iv-e x < f , f₁ > ()
-   iv-e x (iv f g) {_} {y} {h} eq with eval (iv f g) 
-   iv-e x (iv f g) {_} {y} {h} refl | iv y h = {!!}
-
-   π-lemma : {a b c : Objs } → ( g : Arrows a ( b ∧ c ) ) ( f1 : Arrows a b ) ( f2 : Arrows a c )
-      → eval g ≡ < f1 , f2 > → eval (iv π g ) ≡ f1
-   π-lemma < g , g₁ > f1 f2 refl = refl
-   π-lemma (iv π g) f1 f2 eq with eval (iv π g)
-   π-lemma (iv π g) f1 f2 refl | < t , t₁ > = refl
-   π-lemma (iv π' g) f1 f2 eq with eval (iv π' g)
-   π-lemma (iv π' g) f1 f2 refl | < t , t₁ > = refl
-   π-lemma (iv ε g) f1 f2 eq with eval (iv ε g)
-   π-lemma (iv ε g) f1 f2 refl | < t , t₁ > = refl
-
-   π'-lemma : {a b c : Objs } → ( g : Arrows a ( b ∧ c ) ) ( f1 : Arrows a b ) ( f2 : Arrows a c )
-      → eval g ≡ < f1 , f2 > → eval (iv π' g ) ≡ f2
-   π'-lemma < g , g₁ > f1 f2 refl = refl
-   π'-lemma (iv π g) f1 f2 eq with eval (iv π g)
-   π'-lemma (iv π g) f1 f2 refl | < t , t₁ > = refl
-   π'-lemma (iv π' g) f1 f2 eq with eval (iv π' g)
-   π'-lemma (iv π' g) f1 f2 refl | < t , t₁ > = refl
-   π'-lemma (iv ε g) f1 f2 eq with eval (iv ε g)
-   π'-lemma (iv ε g) f1 f2 refl | < t , t₁ > = refl
-
-   iv-d : { a b c : Objs } → (x : Arrow b c ) ( g : Arrows a b ) → eval (iv x g) ≡ eval (iv x (eval g))
-   iv-d (arrow x) g = begin
-          eval (iv (arrow x) g) 
-        ≡⟨ iv-e-arrow x g ⟩
-          iv (arrow x) (eval g)
-        ≡⟨ cong (λ k → iv (arrow x) k ) ( sym ( idem-eval g) ) ⟩
-          iv (arrow x) (eval (eval g))
-        ≡⟨ sym (iv-e-arrow x (eval g)) ⟩
-          eval (iv (arrow x) (eval g))
-        ∎  where open ≡-Reasoning
-   iv-d π (id _) = refl
-   iv-d π < g , g₁ > = sym (idem-eval g)
-   iv-d π (iv x f ) with eval (iv x f) | inspect eval (iv x f)
-   ... | id _ | m = refl
-   ... | < f1 , f2 > | record {eq = ee } = begin
-           f1
-        ≡⟨ sym ( π-lemma (iv x f) f1 f2 ee ) ⟩
-           eval (iv π (iv x f))
-        ≡⟨ sym (idem-eval (iv π (iv x f))) ⟩
-           eval (eval (iv π (iv x f)))
-        ≡⟨ cong (λ k → eval k ) (π-lemma (iv x f) f1 f2 ee ) ⟩
-           eval f1 
-        ∎  where open ≡-Reasoning
-   iv-d π (iv x f) | iv x1 f1 | record { eq = ee }  = begin
-           iv π (iv x1 f1)
-        ≡⟨ sym (cong (λ k → iv π k ) ee) ⟩
-           iv π (eval (iv x f))
-        ≡⟨ sym (iv-e π (iv x f) ee )  ⟩
-           eval (iv π (iv x f))
-        ≡⟨ sym (idem-eval (iv π (iv x f))) ⟩
-           eval (eval (iv π (iv x f)))
-        ≡⟨ cong (λ k → eval k ) ( iv-e π (iv x f) ee ) ⟩
-           eval (iv π (eval (iv x f)))
-        ≡⟨ cong (λ k → eval (iv π k)) ee ⟩
-           eval (iv π (iv x1 f1))
-        ∎  where open ≡-Reasoning
-   iv-d π' (id _) = refl
-   iv-d π' < g , g₁ > = sym (idem-eval g₁)
-   iv-d π' (iv x f ) with eval (iv x f) | inspect eval (iv x f)
-   ... | id _ | m = refl
-   ... | < f1 , f2 > | record {eq = ee } = begin
-           f2
-        ≡⟨ sym ( π'-lemma (iv x f) f1 f2 ee ) ⟩
-           eval (iv π' (iv x f))
-        ≡⟨ sym (idem-eval (iv π' (iv x f))) ⟩
-           eval (eval (iv π' (iv x f)))
-        ≡⟨ cong (λ k → eval k ) (π'-lemma (iv x f) f1 f2 ee ) ⟩
-           eval f2 
-        ∎  where open ≡-Reasoning
-   iv-d π' (iv x f) | iv x1 f1 | record { eq = ee }  = begin
-           iv π' (iv x1 f1)
-        ≡⟨ sym (cong (λ k → iv π' k ) ee) ⟩
-           iv π' (eval (iv x f))
-        ≡⟨ sym (iv-e π' (iv x f) ee )  ⟩
-           eval (iv π' (iv x f))
-        ≡⟨ sym (idem-eval (iv π' (iv x f))) ⟩
-           eval (eval (iv π' (iv x f)))
-        ≡⟨ cong (λ k → eval k ) ( iv-e π' (iv x f) ee ) ⟩
-           eval (iv π' (eval (iv x f)))
-        ≡⟨ cong (λ k → eval (iv π' k)) ee ⟩
-           eval (iv π' (iv x1 f1))
-        ∎  where open ≡-Reasoning
-   iv-d ε g = begin
-            eval (iv ε g)
-        ≡⟨ iv-e-ε g ⟩
-          iv ε (eval g)
-        ≡⟨ cong (λ k → iv ε k ) ( sym ( idem-eval g) ) ⟩
-          iv ε (eval (eval g))
-        ≡⟨ sym (iv-e-ε (eval g)) ⟩
-          eval (iv ε (eval g))
-        ∎  where open ≡-Reasoning
-   iv-d (x *) g = begin
-            eval (iv (x *) g)
-        ≡⟨ iv-e-* g ⟩
-          iv ((eval x) *) (eval g)
-        ≡⟨ cong (λ k → iv ((eval x) *) k ) ( sym ( idem-eval g) ) ⟩
-          iv ((eval x) *) (eval (eval g))
-        ≡⟨ sym (iv-e-* (eval g)) ⟩
-          eval (iv (x *) (eval g))
-        ∎  where open ≡-Reasoning
-
-   idem-eval (id a) = refl
-   idem-eval (○ a) = refl
-   idem-eval < f , f₁ > = cong₂ ( λ j k → < j , k > ) (idem-eval f) (idem-eval f₁)
-   idem-eval (iv (f *) (id a)) = {!!}
-   idem-eval (iv f (id a)) = {!!}
-   idem-eval (iv (f *) (○ a)) = {!!}
-   idem-eval (iv f (○ a)) = {!!}
-   idem-eval (iv π < g , g₁ >) = idem-eval g
-   idem-eval (iv π' < g , g₁ >) = idem-eval g₁
-   idem-eval (iv ε < f , f₁ >) = cong₂ ( λ j k → iv ε < j , k > ) (idem-eval f) (idem-eval f₁)
-   idem-eval (iv (x *) < f , f₁ >) = {!!} -- cong₂ ( λ j k → iv ((eval x) *) < j , k > ) (idem-eval f) (idem-eval f₁)
-   idem-eval (iv f (iv g h)) with eval (iv g h) | idem-eval (iv g h) | inspect eval (iv g h)
-   idem-eval (iv f (iv g h)) | id a | m | _ = {!!}
-   idem-eval (iv f (iv g h)) | ○ a | m | _ = {!!}
-   idem-eval (iv π (iv g h)) | < t , t₁ > | m | _ = refl-<l> {!!}
-   idem-eval (iv π' (iv g h)) | < t , t₁ > | m | _ = refl-<r> {!!}
-   idem-eval (iv ε (iv g h)) | < t , t₁ > | m | _ = {!!} -- cong ( λ k → iv ε k ) ?
-   idem-eval (iv (f *) (iv g h)) | < t , t₁ > | m | _ = {!!} -- cong ( λ k → iv (f *) k ) m
-   idem-eval (iv ε (iv g h)) | iv f₁ t | m | record { eq = ee } = {!!} -- trans (iv-e-ε (iv f₁ t)) (cong ( λ k → iv ε k ) m )
-   idem-eval (iv (x *) (iv g h)) | iv f₁ t | m | record { eq = ee } = {!!} -- trans (iv-e-* (iv f₁ t)) {!!} -- (cong ( λ k → iv (x *) k ) m )
-   idem-eval (iv π (iv g h)) | iv f₁ t | m | record { eq = ee } = begin
-           {!!}
-        ≡⟨ {!!} ⟩
-          eval (iv π ( iv f₁ t))
-        ≡⟨ {!!} ⟩
-          eval (iv π (eval (iv g h )))
-        ≡⟨ {!!} ⟩
-          eval (iv π (iv g h)) 
-        ≡⟨ iv-e π (iv g h) ee ⟩
-          iv π (eval (iv g h))
-        ≡⟨ cong (λ k → iv π k ) ee  ⟩
-          iv π ( iv f₁ t)
-        ≡⟨ {!!} ⟩
-           {!!}
-        ∎  where open ≡-Reasoning
-   idem-eval (iv π' (iv g h)) | iv f₁ t | m | record { eq = ee } = {!!}
-   idem-eval (iv (arrow x) (iv g h)) | iv f₁ t | m | record { eq = ee } = {!!} -- trans (iv-e-arrow x (iv f₁ t)) (cong ( λ k → iv (arrow x) k ) m )  
 
    PL1 :  Category  (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂)
    PL1 = record {
@@ -293,28 +112,7 @@
            }  where 
               d-eval  : {A B C : Objs} (f : Arrows B C) (g : Arrows A B) →
                      eval (f ・ g) ≡ eval (eval f ・ eval g)
-              d-eval (id a) g = sym (idem-eval  g)
-              d-eval (○ a) g = refl
-              d-eval < f , f₁ > g = cong₂ (λ j k → < j , k > ) (d-eval f g) (d-eval f₁ g)
-              d-eval (iv x (id a)) g = {!!} -- iv-d x g
-              d-eval (iv (x *) (○ a)) g = {!!} -- refl
-              d-eval (iv π < f , f₁ >) g = d-eval f g
-              d-eval (iv π' < f , f₁ >) g = d-eval f₁ g
-              d-eval (iv ε < f , f₁ >) g = cong₂ (λ j k → iv ε k ) (d-eval f g) (
-                  cong₂ (λ j k → < j , k > ) ( d-eval f g ) ( d-eval f₁ g ))
-              d-eval (iv (x *) < f , f₁ >) g =  {!!} -- cong₂ (λ j k → iv ((eval x) *) k ) (d-eval f g) (
-                  -- cong₂ (λ j k → < j , k > ) ( d-eval f g ) ( d-eval f₁ g ))
-              d-eval (iv x (iv f f₁)) g = begin
-                    eval (iv x (iv f f₁) ・ g)
-                ≡⟨⟩
-                    eval (iv x (iv f f₁ ・ g))
-                ≡⟨ {!!} ⟩
-                    eval (iv x (eval (iv f f₁ ・ g)))
-                ≡⟨ {!!} ⟩
-                    eval (iv x (eval (iv f f₁) ・ eval g))
-                ≡⟨ {!!} ⟩
-                    eval (eval (iv x (iv f f₁)) ・ eval g)
-                ∎  where open ≡-Reasoning
+              d-eval = {!!}
               ore  : {A B C : Objs} (f g : Arrows A B) (h i : Arrows B C) →
                                     eval f ≡ eval g → eval h ≡ eval i → eval (h ・ f) ≡ eval (i ・ g)
               ore f g h i f=g h=i = begin
@@ -328,16 +126,16 @@
                 ∎  where open ≡-Reasoning
 
 
-   fmap : {A B : Obj PL} → Hom PL A B → Hom PL A B
-   fmap f = {!!}
-
-   PLCCC :  Functor PL PL
-   PLCCC = record {
-         FObj = λ x → x
-       ; FMap = fmap
-       ; isFunctor = record {
-              identity = {!!}
-            ; distr = {!!}
-            ; ≈-cong = {!!}
-          }
-      }
+--    fmap : {A B : Obj PL} → Hom PL A B → Hom PL A B
+--    fmap f = {!!}
+-- 
+--    PLCCC :  Functor PL PL
+--    PLCCC = record {
+--          FObj = λ x → x
+--        ; FMap = fmap
+--        ; isFunctor = record {
+--               identity = {!!}
+--             ; distr = {!!}
+--             ; ≈-cong = {!!}
+--           }
+--       }