Mercurial > hg > Members > kono > Proof > category
changeset 368:b18585089d2e
add more parameter to nat in lim-to-equ
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 05 Mar 2016 23:56:17 +0900 |
parents | e9e14eec7391 |
children | a8ac736d73ff |
files | limit-to.agda |
diffstat | 1 files changed, 15 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Sat Mar 05 16:08:32 2016 +0900 +++ b/limit-to.agda Sat Mar 05 23:56:17 2016 +0900 @@ -88,36 +88,33 @@ nmap x d h with (obj→ two x) ... | t0 = h ... | t1 = A [ f o h ] - commute : {x y : Obj Two} {f : Hom Two x y} (d : Obj A) (h : Hom A d a ) -> TwoObject -> TwoObject - → A [ A [ FMap Γ f o nmap x d h ] ≈ A [ nmap y d h o FMap (K A Two d) f ] ] - commute {x} {y} {f} d h t0 t0 = let open ≈-Reasoning (A) in + commute1 : {x y : Obj Two} {f' : Hom Two x y} (d : Obj A) (h : Hom A d a ) -> A [ A [ f o h ] ≈ A [ g o h ] ] -> TwoObject -> TwoObject + → A [ A [ FMap Γ f' o nmap x d h ] ≈ A [ nmap y d h o FMap (K A Two d) f' ] ] + commute1 {x} {y} {f'} d h fh=gh t0 t0 = let open ≈-Reasoning (A) in begin - FMap Γ f o nmap x d h + FMap Γ f' o nmap x d h ≈⟨ {!!} ⟩ - {!!} - ≈⟨⟩ nmap y d h ≈↑⟨ idR ⟩ nmap y d h o id1 A d ≈⟨⟩ - nmap y d h o FMap (K A Two d) f + nmap y d h o FMap (K A Two d) f' ∎ - commute {x} {y} {f} d h t0 t1 = let open ≈-Reasoning (A) in + commute1 {x} {y} {f'} d h fh=gh t0 t1 = let open ≈-Reasoning (A) in begin - FMap Γ f o nmap x d h - ≈⟨⟩ - FMap Γ f o h + FMap Γ f' o nmap x d h ≈⟨ {!!} ⟩ - nmap y d h o FMap (K A Two d) f + nmap y d h o FMap (K A Two d) f' ∎ - commute {x} {y} {f} d h t1 t0 = {!!} - commute {x} {y} {f} d h t1 t1 = {!!} - nat : (d : Obj A) → (h : Hom A d a ) → NTrans Two A (K A Two d) Γ - nat d h = record { + commute1 {x} {y} {f'} d h fh=gh t1 t0 = {!!} + commute1 {x} {y} {f'} d h fh=gh t1 t1 = {!!} + nat : (d : Obj A) → (h : Hom A d a ) → A [ A [ f o h ] ≈ A [ g o h ] ] → NTrans Two A (K A Two d) Γ + nat d h fh=gh = record { TMap = λ x → nmap x d h ; isNTrans = record { - commute = λ {x} {y} {f} -> commute d h (obj→ two x) (obj→ two y) + commute = λ {x} {y} {f'} -> commute1 {x} {y} {f'} d h fh=gh (obj→ two x) (obj→ two y) } } k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c - k {d} h fh=gh = limit (lim Two Γ {c} {nat c e }) d (nat d h ) + k {d} h fh=gh = limit (lim Two Γ {c} {nat c e fe=ge }) d (nat d h fh=gh ) +