Mercurial > hg > Members > kono > Proof > category
changeset 819:b27b231c2d54
one
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 28 Apr 2019 16:03:42 +0900 |
parents | bc244fc604c8 |
children | 658daaa74df3 |
files | CCCGraph.agda |
diffstat | 1 files changed, 49 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Sun Apr 28 13:02:36 2019 +0900 +++ b/CCCGraph.agda Sun Apr 28 16:03:42 2019 +0900 @@ -117,6 +117,55 @@ <_,_> : {a b c : Objs G } → Arrow G c a → Arrow G c b → Arrow G c (a ∧ b) _* : {a b c : Objs G } → Arrow G (c ∧ b ) a → Arrow G c ( a <= b ) + data one {v : Level} {S : Set v} : Set v where + elm : (x : S ) → one + + iso→ : {v : Level} {S : Set v} → one → S + iso→ (elm x) = x + + data iso← {v : Level} {S : Set v} : (one {v} {S} ) → S → Set v where + elmeq : {x : S} → iso← ( elm x ) x + + iso-left : {v : Level} {S : Set v} → (x : one {v} {S} ) → (a : S ) → iso← x a → iso→ x ≡ a + iso-left (elm x) .x elmeq = refl + + iso-right : {v : Level} {S : Set v} → (x : one {v} {S} ) → iso← x ( iso→ x ) + iso-right (elm x) = elmeq + +-- record one {v : Level} {S : Set v} : Set (suc v) where +-- field +-- elm : S +-- +-- iso→ : {v : Level} {S : Set v} → one {v} {S} → One {Level.zero} → S +-- iso→ x OneObj = one.elm x +-- iso← : {v : Level} {S : Set v} → one {v} {S} → S → One {Level.zero} +-- iso← x y = OneObj +-- +-- iso-left : {v : Level} {S : Set v} → (x : one {v} {S} ) → (a : S ) → iso→ x ( iso← x a ) ≡ a +-- iso-left x a = {!!} +-- +-- iso-right : {v : Level} {S : Set v} → (x : one {v} {S} ) → iso← x ( iso→ x OneObj ) ≡ OneObj +-- iso-right x = refl + + record one' {v : Level} {S : Set v} : Set (suc v) where + field + elm' : S + iso→' : One {Level.zero} → S + iso←' : S → One {Level.zero} + iso-left' : iso→' ( iso←' elm' ) ≡ elm' + iso-right' : iso←' ( iso→' OneObj ) ≡ OneObj + + tmp : {v : Level} {S : Set v} → one {v} {S} → one' {v} {S} + tmp x = record { + elm' = iso→ x + ; iso→' = λ _ → iso→ x + ; iso←' = λ _ → OneObj + ; iso-left' = refl + ; iso-right' = refl + } + + + record SM {v : Level} : Set (suc v) where field graph : Graph {v}