changeset 753:b7d804370c1d

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 10 Dec 2017 23:19:37 +0900 (2017-12-10)
parents e7ace77d7235
children f01e8d16a85d
files monad→monoidal.agda
diffstat 1 files changed, 20 insertions(+), 21 deletions(-) [+]
line wrap: on
line diff
--- a/monad→monoidal.agda	Sun Dec 10 22:26:01 2017 +0900
+++ b/monad→monoidal.agda	Sun Dec 10 23:19:37 2017 +0900
@@ -95,27 +95,27 @@
                  ( λ a → μ ( x * ( y * z ) ) (FMap F (λ f → FMap F (λ g → f , g) (μ (y * z ) (FMap F (λ f₁ → FMap F (λ g → f₁ , g) c) b))) a))
              ≈⟨⟩
                   μ ( x * ( y * z ) )  o (FMap F (λ f → ( FMap F (λ g → f , g) o ( μ (y * z ) o  FMap F (λ f₁ → FMap F (λ g → f₁ , g) c ) )) b ))
-             ≈⟨ {!!} ⟩ -- assoc
+             ≈⟨⟩ -- assoc
                   μ ( x * ( y * z ) )  o (FMap F (λ f → ( (FMap F (λ g → f , g) o ( μ (y * z ))) o  FMap F (λ f₁ → FMap F (λ g → f₁ , g) c ) ) b ))
-             ≈⟨ {!!} ⟩ -- nat μ
+             ≈⟨ {!!} ⟩
                   μ ( x * ( y * z ) )  o (FMap F (λ f → ( ( μ ( x * ( y * z ) ) o FMap F (FMap F (λ g → f , g))  ) o  FMap F (λ f₁ → FMap F (λ g → f₁ , g) c ) ) b ))
-             ≈⟨ {!!} ⟩ -- assoc
+             ≈⟨⟩ -- assoc
                   μ ( x * ( y * z ) )  o (FMap F (λ f → (  μ ( x * ( y * z ) ) o ( FMap F (FMap F (λ g → f , g))  o  FMap F (λ f₁ → FMap F (λ g → f₁ , g) c )) ) b ))
              ≈⟨ {!!} ⟩  -- distr F
                   μ ( x * ( y * z ) )  o (FMap F (λ f → (  μ ( x * ( y * z ) ) o ( FMap F (FMap F (λ g → f , g) o (λ f₁ → FMap F (λ g → f₁ , g) c)))) b ))
              ≈⟨⟩
                   μ ( x * ( y * z ) )  o (FMap F (λ f → (  μ ( x * ( y * z ) ) o ( FMap F ((λ f₁ → (FMap F (λ g → f , g) o FMap F (λ g → f₁ , g)) c)))) b ))
-             ≈⟨ {!!} ⟩ -- distr F
+             ≈⟨ {!!} ⟩  -- distr F
                   μ ( x * ( y * z ) )  o (FMap F (λ f → (  μ ( x * ( y * z ) ) o ( FMap F (λ f₁ → (FMap F ((λ g → f , g) o (λ g → f₁ , g))) c))) b ))
              ≈⟨⟩
                   μ ( x * ( y * z ) )  o (FMap F (λ f → (  μ ( x * ( y * z ) ) o ( FMap F (λ g → (FMap F (λ h → f , (g , h))) c))) b ))
              ≈⟨⟩
                   μ ( x * ( y * z ) )  o (FMap F (  μ ( x * ( y * z ) ) o (λ f → ( FMap F (λ g → (FMap F (λ h → f , (g , h))) c)) b )))
-             ≈⟨ {!!} ⟩ -- distr F
+             ≈⟨ cdr {_} {_} {_} {_} {_} {μ ( x * ( y * z ) )} ( distr F ) ⟩ -- distr F
                   μ ( x * ( y * z ) )  o (FMap F (  μ ( x * ( y * z ) )) o FMap F (λ f → ( FMap F (λ g → (FMap F (λ h → f , (g , h))) c)) b ))
-             ≈⟨ {!!} ⟩ -- assoc
+             ≈⟨⟩ -- assoc
                   ( μ ( x * ( y * z ) )  o FMap F (  μ ( x * ( y * z ) ))) o (FMap F (λ f → ( FMap F (λ g → (FMap F (λ h → f , (g , h))) c)) b ))
-             ≈⟨ {!!} ⟩  --- monad assoc
+             ≈↑⟨ car ( IsMonad.assoc ( Monad.isMonad monad )) ⟩  --- monad assoc
                   ( μ ( x * ( y * z ) )  o  μ ( FObj F (x * ( y * z ) ))) o (FMap F (λ f → ( FMap F (λ g → (FMap F (λ h → f , (g , h))) c)) b ))
              ≈⟨ cdr {_} {_} {_} {_} {_} { μ ( x * ( y * z ) )} ( cdr {_} {_} {_} {_} {_} { μ ( FObj F (x * ( y * z ) ))} ( begin
                      FMap F (λ f → ( FMap F (λ g → (FMap F (λ h → f , (g , h))) c)) b ) 
@@ -126,43 +126,42 @@
                   ≈⟨⟩
                      FMap F ( FMap F ( λ f → ( FMap F (λ x₂ → proj₁ f , proj₂ f , x₂)) c)  o (λ h → FMap F (λ g → h , g) b)  )
                   ≈⟨⟩
-                     FMap F ( FMap F ( λ f → ( FMap F ((λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o (λ g → f , g))) c)  o (λ f → FMap F (λ g → f , g) b)  )
+                     FMap F ( FMap F ( λ f → ( FMap F ((λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o (λ g → f , g))) c)  o (λ f → FMap F (λ g → f , g) b))
                   ≈⟨ {!!} ⟩
                      FMap F ( FMap F ( λ f → ( FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o FMap F (λ g → f , g)) c)  o (λ f → FMap F (λ g → f , g) b)  )
                   ≈⟨⟩
-                     FMap F ( FMap F (  FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o (λ f → FMap F (λ g → f , g) c))  o (λ f → FMap F (λ g → f , g) b)  )
-                  ≈⟨ {!!} ⟩
+                     FMap F ( FMap F (FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o (λ f → FMap F (λ g → f , g) c))  o (λ f → FMap F (λ g → f , g) b)  )
+                  ≈⟨ distr F ⟩
                      FMap F ( FMap F (FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o (λ f → FMap F (λ g → f , g) c)) ) o (FMap F (λ f → FMap F (λ g → f , g) b)  )

                ))  ⟩
                   ( μ ( x * ( y * z ))   o μ ( FObj F (x * ( y * z ))))
                             o ( FMap F ( FMap F (FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o (λ f → FMap F (λ g → f , g) c)) ) o (FMap F (λ f → FMap F (λ g → f , g) b) ) )
-             ≈⟨ {!!} ⟩ -- assoc
+             ≈⟨⟩ -- assoc
                   μ ( x * ( y * z ))   o ( μ ( FObj F (x * ( y * z )))
                             o ( FMap F ( FMap F (FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o (λ f → FMap F (λ g → f , g) c)) ) o (FMap F (λ f → FMap F (λ g → f , g) b) ) ))
-             ≈⟨ {!!} ⟩ -- assoc 
+             ≈⟨⟩ -- assoc 
                   μ ( x * ( y * z ))   o (( μ ( FObj F (x * ( y * z )))  o FMap F (FMap F (FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o
                       (λ f → FMap F (λ g → f , g) c)) ) ) o (FMap F (λ f → FMap F (λ g → f , g) b) ))
-             --- ≈⟨ cdr (car ( nat (Monad.μ monad ))) ⟩
-             ≈⟨ {!!} ⟩ 
+             ≈↑⟨ cdr {_} {_} {_} {_} {_} {μ ( x * ( y * z ))} (car ( nat (Monad.μ monad ))) ⟩
                   μ ( x * ( y * z ))   o (( FMap F (FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o 
                       (λ f → FMap F (λ g → f , g) c))  o μ (x * y ) ) o (FMap F (λ f → FMap F (λ g → f , g) b) ))
-             ≈⟨ {!!} ⟩ --- assoc
+             ≈⟨⟩ --- assoc
                   μ ( x * ( y * z ))   o ( FMap F (FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o 
                       (λ f → FMap F (λ g → f , g) c))  o (μ (x * y )  o (FMap F (λ f → FMap F (λ g → f , g) b) )))
-             ≈⟨ {!!}  ⟩ --- assoc
+             ≈⟨ cdr {_} {_} {_} {_} {_} {μ ( x * ( y * z ))} ( car ( distr F )) ⟩ 
                   μ ( x * ( y * z ))   o (( FMap F (FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc) ) o 
                       FMap F (λ f → FMap F (λ g → f , g) c))  o (μ (x * y )  o (FMap F (λ f → FMap F (λ g → f , g) b) )))
-             ≈⟨ {!!} ⟩ -- assoc
+             ≈⟨⟩ -- assoc
                   μ ( x * ( y * z ))   o (( FMap F (FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc) )) o 
                       (FMap F (λ f → FMap F (λ g → f , g) c)  o (μ (x * y )  o (FMap F (λ f → FMap F (λ g → f , g) b) ))))
-             ≈⟨ {!!} ⟩ -- assoc
+             ≈⟨⟩ -- assoc
                  ( μ ( x * ( y * z ))   o (FMap F (FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc) ))) o 
                       (FMap F (λ f → FMap F (λ g → f , g) c)  o (μ (x * y )  o (FMap F (λ f → FMap F (λ g → f , g) b) )))
-             ≈⟨ {!!} ⟩  -- nat μ
+             ≈↑⟨ car ( nat ( Monad.μ monad ) ) ⟩  
                  (FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o μ ( ( x * y ) * z ))  o
                       (FMap F (λ f → FMap F (λ g → f , g) c)  o (μ (x * y )  o (FMap F (λ f → FMap F (λ g → f , g) b) )))
-             ≈⟨ {!!} ⟩  --   nat μ
+             ≈⟨⟩ 
                  FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc)  o
                     (μ ( ( x * y ) * z )  o  (FMap F (λ f → FMap F (λ g → f , g) c)  o (μ (x * y )  o (FMap F (λ f → FMap F (λ g → f , g) b) ))))
              ≈⟨⟩
@@ -204,7 +203,7 @@
                   FMap F proj₁ o  (μ (a * One ) o FMap F ( η (a * One  ) o ( λ f → ( f , OneObj  ))))
              ≈⟨ cdr {_} {_} {_} {_} {_} {FMap F proj₁} ( cdr {_} {_} {_} {_} {_} {μ (a * One )} ( distr F )) ⟩
                   FMap F proj1 o  (μ (a * One ) o ( FMap F ( η (a * One  )) o FMap F ( λ f → ( f , OneObj  ))))
-             ≈⟨ cdr {_} {_} {_} {_} {_} {FMap F proj₁} ( assoc {_} {_} {_} {_} { μ (a * One )} { FMap F ( η (a * One  ))} {FMap F ( λ f → ( f , OneObj  ))}  ) ⟩
+             ≈⟨⟩
                   FMap F proj1 o  ( ( μ (a * One ) o  FMap F ( η (a * One  ))) o FMap F ( λ f → ( f , OneObj  )))
              ≈⟨ cdr {_} {_} {_} {_} {_} {FMap F proj₁} ( car ( IsMonad.unity2 (Monad.isMonad monad )))   ⟩
                   FMap F proj₁ o  ( id1 Sets (FObj F (a * One)) o FMap F ( λ f → ( f , OneObj  )))