Mercurial > hg > Members > kono > Proof > category
changeset 99:bd542a1caf08
uniquness of comparison functor
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Jul 2013 18:27:24 +0900 |
parents | b0ba34a27783 |
children | 59dec035602c |
files | comparison-functor.agda |
diffstat | 1 files changed, 60 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/comparison-functor.agda Mon Jul 29 16:49:11 2013 +0900 +++ b/comparison-functor.agda Mon Jul 29 18:27:24 2013 +0900 @@ -32,6 +32,8 @@ open import adj-monad +T_K = U_K ○ F_K + μ_K : NTrans A A (( U_K ○ F_K ) ○ ( U_K ○ F_K )) ( U_K ○ F_K ) μ_K = UεF A B U_K F_K ε_K @@ -136,3 +138,61 @@ kfmap g o kfmap f ∎ +Lemma-K1 : {a b : Obj A} ( f : Hom A a b ) -> B [ FMap K_T ( FMap F_T f) ≈ FMap F_K f ] +Lemma-K1 {a} {b} f = let open ≈-Reasoning (B) in + begin + FMap K_T ( FMap F_T f) + ≈⟨⟩ + TMap ε_K (FObj F_K b) o FMap F_K (KMap( FMap F_T f)) + ≈⟨⟩ + TMap ε_K (FObj F_K b) o FMap F_K (A [ TMap η_K b o f ]) + ≈⟨ cdr ( distr F_K) ⟩ + TMap ε_K (FObj F_K b) o (FMap F_K (TMap η_K b) o FMap F_K f ) + ≈⟨ assoc ⟩ + (TMap ε_K (FObj F_K b) o FMap F_K (TMap η_K b)) o FMap F_K f + ≈⟨ car ( IsAdjunction.adjoint2 (isAdjunction AdjK)) ⟩ + id1 B (FObj F_K b) o FMap F_K f + ≈⟨ idL ⟩ + FMap F_K f + ∎ + +Lemma-K2 : {a b : Obj A} ( f : KHom a b ) -> A [ FMap U_K ( FMap K_T f) ≈ FMap U_T f ] +Lemma-K2 {a} {b} f = let open ≈-Reasoning (A) in + begin + FMap U_K ( FMap K_T f) + ≈⟨⟩ + FMap U_K ( B [ TMap ε_K (FObj F_K b) o FMap F_K (KMap f) ] ) + ≈⟨ distr U_K ⟩ + FMap U_K ( TMap ε_K (FObj F_K b)) o FMap U_K (FMap F_K (KMap f) ) + ≈⟨⟩ + TMap μ_K b o FMap T_K (KMap f) + ≈⟨⟩ -- the definition + FMap U_T f + ∎ + +Lemma-K3 : (b : Obj A) -> B [ FMap K_T (record { KMap = (TMap η_K b) }) ≈ id1 B (FObj F_K b) ] +Lemma-K3 b = let open ≈-Reasoning (B) in + begin + FMap K_T (record { KMap = (TMap η_K b) }) + ≈⟨⟩ + TMap ε_K (FObj F_K b) o FMap F_K (TMap η_K b) + ≈⟨ IsAdjunction.adjoint2 (isAdjunction AdjK) ⟩ + id1 B (FObj F_K b) + ∎ + +Lemma-K4 : (b c : Obj A) (g : Hom A b (FObj T_K c)) -> B [ FMap K_T ( record { KMap = A [ (TMap η_K (FObj T_K c)) o g ] }) ≈ FMap F_K g ] +Lemma-K4 b c g = let open ≈-Reasoning (B) in + begin + FMap K_T ( record { KMap = A [ (TMap η_K (FObj T_K c)) o g ] }) + ≈⟨⟩ + TMap ε_K (FObj F_K (FObj T_K c)) o FMap F_K (A [ (TMap η_K (FObj T_K c)) o g ]) + ≈⟨ cdr (distr F_K) ⟩ + TMap ε_K (FObj F_K (FObj T_K c)) o ( FMap F_K (TMap η_K (FObj T_K c)) o FMap F_K g ) + ≈⟨ assoc ⟩ + (TMap ε_K (FObj F_K (FObj T_K c)) o ( FMap F_K (TMap η_K (FObj T_K c)))) o FMap F_K g + ≈⟨ car ( IsAdjunction.adjoint2 (isAdjunction AdjK)) ⟩ + id1 B (FObj F_K (FObj T_K c)) o FMap F_K g + ≈⟨ idL ⟩ + FMap F_K g + ∎ +