Mercurial > hg > Members > kono > Proof > category
changeset 527:beac7b0786cb
fix ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Mar 2017 18:10:15 +0900 |
parents | b035cd3be525 |
children | 531547cf3b92 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 25 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Tue Mar 28 11:49:35 2017 +0900 +++ b/SetsCompleteness.agda Tue Mar 28 18:10:15 2017 +0900 @@ -151,7 +151,7 @@ field small→ : Obj C → I small← : I → Obj C - small-iso : { i : I } → small→ ( small← i ) ≡ i + small-iso : { x : Obj C } → Hom C (small← ( small→ x )) x shom→ : {i j : Obj C } → Hom C i j → I → I shom← : {i j : I } → ( f : I → I ) → Hom C ( small← i ) ( small← j ) shom-iso : {i j : I } → ( f : Hom C ( small← i ) ( small← j ) ) → C [ shom← ( shom→ f ) ≈ f ] @@ -169,15 +169,18 @@ record slim { c₂ } { I : Set c₂ } ( sobj : I → Set c₂ ) ( smap : { i j : I } → (f : I → I )→ sobj i → sobj j ) : Set c₂ where + field + slim-obj : ( i : I ) → sobj i +open slim SetsLimit : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) → Limit Sets C Γ SetsLimit { c₂} C I s Γ = record { a0 = slim (ΓObj s Γ) (ΓMap s Γ) ; t0 = record { - TMap = λ i → {!!} - ; isNTrans = record { commute = {!!} } + TMap = λ i → Sets [ proj i o e ] + ; isNTrans = record { commute = comm1 } } ; isLimit = record { limit = {!!} @@ -185,11 +188,22 @@ ; limit-uniqueness = {!!} } } where - eqa : {i j : Obj Sets} (f : Hom Sets i j) → sequ (Obj Sets) (Obj Sets) {!!} {!!} -- {!!} {!!} (FMap Γ f o proj i) ( proj j ) - eqa f = {!!} - e : (i : Obj Sets) → Hom Sets (FObj (K Sets Sets (slim {!!} {!!} )) i ) (iproduct (slim {!!} {!!} ) (λ I → {!!} (slim {!!} {!!} ))) - e i = λ x → record { pi1 = λ j → {!!} } - proj : (i : Obj Sets) → ( prod : iproduct (slim {!!} {!!} ) (λ i → {!!} )) → {!!} - proj i prod = {!!} - comm1 : {a b : Obj Sets} {f : Hom Sets a b} → {!!} - comm1 {a} {b} {f} = {!!} + a0 : Obj Sets + a0 = slim (ΓObj s Γ) (ΓMap s Γ) + iid : {i : Obj C } → Hom Sets (FObj Γ (small← s (small→ s i))) (FObj Γ i) + iid {i} = FMap Γ ( small-iso s ) + e : Hom Sets a0 (iproduct I (λ j → ΓObj s Γ j)) + e = λ x → record { pi1 = λ j → slim-obj x j } + proj : (i : Obj C ) → ( prod : iproduct I (λ j → ΓObj s Γ j )) → FObj Γ i + proj i prod = iid ( pi1 prod ( small→ s i ) ) + comm1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o Sets [ proj a o e ] ] ≈ + Sets [ Sets [ proj b o e ] o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ))) f ] ] + comm1 {a} {b} {f} = extensionality Sets ( λ x → begin + ? + ≡⟨ {!!} ⟩ + {!!} + ∎ ) where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning + +