Mercurial > hg > Members > kono > Proof > category
changeset 62:c5277284919e
assoc proved.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 25 Jul 2013 11:43:51 +0900 |
parents | af7ddd9f9122 |
children | 97eb12318048 |
files | nat.agda |
diffstat | 1 files changed, 17 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/nat.agda Wed Jul 24 23:23:56 2013 +0900 +++ b/nat.agda Thu Jul 25 11:43:51 2013 +0900 @@ -288,8 +288,24 @@ T = U ○ F μ : NTrans A A ( T ○ T ) T μ = UεF A B U F ε + lemma-assoc1 : (b : Obj B) → B [ B [ TMap ε b o TMap ε ( FObj F ( FObj U b)) ] ≈ + B [ TMap ε b o FMap F (FMap U (TMap ε b)) ] ] + lemma-assoc1 b = IsNTrans.naturality ( isNTrans ε ) assoc1 : {a : Obj A} → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] - assoc1 = {!!} + assoc1 {a} = let open ≈-Reasoning (A) in + begin + TMap μ a o TMap μ ( FObj T a ) + ≈⟨⟩ + (FMap U (TMap ε ( FObj F a ))) o (FMap U (TMap ε ( FObj F ( FObj U (FObj F a ))))) + ≈⟨ sym (IsFunctor.distr (isFunctor U)) ⟩ + FMap U (B [ TMap ε ( FObj F a ) o TMap ε ( FObj F ( FObj U (FObj F a ))) ] ) + ≈⟨ (IsFunctor.≈-cong (isFunctor U)) (lemma-assoc1 ( FObj F a )) ⟩ + FMap U (B [ (TMap ε ( FObj F a )) o FMap F (FMap U (TMap ε ( FObj F a ))) ] ) + ≈⟨ IsFunctor.distr (isFunctor U) ⟩ + (FMap U (TMap ε ( FObj F a ))) o FMap U (FMap F (FMap U (TMap ε ( FObj F a )))) + ≈⟨⟩ + TMap μ a o FMap T (TMap μ a) + ∎ unity1 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] unity1 {a} = let open ≈-Reasoning (A) in begin