Mercurial > hg > Members > kono > Proof > category
changeset 302:c5b2656dbec6
looped.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 30 Oct 2013 19:35:14 +0900 |
parents | 93cf0a6c21fe |
children | 7f40d6a51c72 |
files | pullback.agda |
diffstat | 1 files changed, 32 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Sun Sep 29 14:43:47 2013 +0900 +++ b/pullback.agda Wed Oct 30 19:35:14 2013 +0900 @@ -44,7 +44,8 @@ π2p=π2 = λ {d} {π1'} {π2'} {eq} → π2p=π21 {d} {π1'} {π2'} {eq} ; uniqueness = uniqueness1 } where - commute1 : A [ A [ f o A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ≈ A [ g o A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ] + commute1 : A [ A [ f o A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] + ≈ A [ g o A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ] commute1 = let open ≈-Reasoning (A) in begin f o ( π1 o equalizer (eqa ( f o π1 ) ( g o π2 )) ) @@ -102,7 +103,8 @@ ≈⟨ π2fxg=g prod ⟩ π2' ∎ - uniqueness1 : {d₁ : Obj A} (p' : Hom A d₁ d) {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → + uniqueness1 : {d₁ : Obj A} (p' : Hom A d₁ d) {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} + {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → {eq1 : A [ A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π1' ]} → {eq2 : A [ A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π2' ]} → A [ p1 eq ≈ p' ] @@ -331,10 +333,35 @@ ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ product ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ] ip-cong : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } → ( ∀ (i : I ) → A [ qi i ≈ qi' i ] ) → A [ product qi ≈ product qi' ] - -- another form of uniquness - ip-uniquness1 : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ∀ { i : I } → ( product' : Hom A q p ) - → A [ A [ ( pi i ) o product' ] ≈ (qi i) ] + -- another form of uniquness + ip-uniquness1 : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ( product' : Hom A q p ) + → ( ∀ { i : I } → A [ A [ ( pi i ) o product' ] ≈ (qi i) ] ) → A [ product' ≈ product qi ] + ip-uniquness1 {a} qi product' eq = let open ≈-Reasoning (A) in begin + product' + ≈↑⟨ ip-uniqueness ⟩ + product (λ i₁ → A [ pi i₁ o product' ]) + ≈⟨ ip-cong ( λ i → begin + pi i o product' + ≈⟨ eq {i} ⟩ + qi i + ∎ ) ⟩ + product qi + ∎ + pif=q1' : { i : I } → { qi : (j : I ) → Hom A p (ai j) } → A [ pi i ≈ qi i ] + pif=q1' {i} {qi} = let open ≈-Reasoning (A) in begin + pi i + ≈↑⟨ idR ⟩ + pi i o id1 A p + ≈⟨ cdr ( ip-uniquness1 {p} qi (id1 A p) ( begin + pi ? o id1 A p + ≈⟨ {!!} ⟩ + qi ? + ∎ )) ⟩ + pi i o product qi + ≈⟨ pif=q {p} qi {i} ⟩ + qi i + ∎ open IProduct open Equalizer