Mercurial > hg > Members > kono > Proof > category
changeset 1080:c61639f34e7b
fix Poly minimum equality
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 12 May 2021 11:30:41 +0900 |
parents | d07cfce03236 |
children | 3f85f57599e0 |
files | src/Polynominal.agda src/ToposIL.agda |
diffstat | 2 files changed, 74 insertions(+), 75 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Polynominal.agda Wed May 12 00:42:14 2021 +0900 +++ b/src/Polynominal.agda Wed May 12 11:30:41 2021 +0900 @@ -67,17 +67,7 @@ x : Hom A 1 a f : Hom A b c phi : φ x {b} {c} f - - -- f ≈ g → k x {f} _ ≡ k x {g} _ Lambek p.60 - -- if A is locally small, it is ≡-cong. - -- case i i is π ∙ f ≈ π ∙ g - -- we have (x y : Hom A 1 a) → x ≡ y (minimul equivalende assumption). this makes all k x ii case valid - -- all other cases, arguments are reduced to f ∙ π' . - --postulate - -- x-singleon : {a b c : Obj A} → (f : Poly a c b ) → (x y : Hom A b a) → x ≡ y -- minimul equivalende assumption (variables are the same except its name) - -- we may prove k-cong from x-singleon - -- k-cong' : {a b c : Obj A} → (f g : Poly a c b ) → A [ Poly.f f ≈ Poly.f g ] → A [ k (Poly.x f) (Poly.phi f) ≈ k (Poly.x g) (Poly.phi g) ] - -- k-cong' {a} {b} {c} f g f=g with Poly.phi f | Poly.phi g + idx : {a : Obj A} → {x : Hom A 1 a} → x ∙ ○ a ≈ id1 A a -- since we have A[x] now, we can proceed the proof on p.64 in some possible future @@ -86,8 +76,6 @@ -- -- For every polynominal ψ(x) : b → c in an indeterminate x : 1 → a over a cartesian or cartesian closed -- category A there is a unique arrow f : a ∧ b → c in A such that f ∙ < x ∙ ○ b , id1 A b > ≈ ψ(x). - -- - -- equality assumption in uniq should be modulo-x, k x phi ≈ k x phi' record Functional-completeness {a b c : Obj A} ( p : Poly a c b ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where x = Poly.x p @@ -115,17 +103,78 @@ *-cong = IsCCC.*-cong isCCC distr-* = IsCCC.distr-* isCCC e2 = IsCCC.e2 isCCC - idx : {a : Obj A} → {x : Hom A 1 a} → x ∙ ○ a ≈ id1 A a - idx {a} {x} = begin - x ∙ ○ a ≈⟨ {!!} ⟩ - id1 A a ∎ + + -- f ≈ g → k x {f} _ ≡ k x {g} _ Lambek p.60 + -- if A is locally small, it is ≡-cong. + -- case i i is π ∙ f ≈ π ∙ g + -- we have (x y : Hom A 1 a) → x ≈ y (minimul equivalende assumption) in record Poly. this makes all k x ii case valid + -- all other cases, arguments are reduced to f ∙ π' . + + mineq : {a b c : Obj A } → Poly a b c → (x y : Hom A 1 a) → x ≈ y + mineq {a} p x y = begin + x ≈↑⟨ idR ⟩ + x ∙ id1 A 1 ≈⟨ cdr e2 ⟩ + x ∙ ○ _ ≈↑⟨ cdr e2 ⟩ + x ∙ (○ a ∙ y ) ≈⟨ assoc ⟩ + (x ∙ ○ a ) ∙ y ≈⟨ car (Poly.idx p) ⟩ + id1 A _ ∙ y ≈⟨ idL ⟩ + y ∎ + ki : {a b b' c c' : Obj A} → Poly a c' b' → (x : Hom A 1 a) → (f : Hom A b c ) → (fp : φ x {b} {c} f ) → A [ f ∙ π' ≈ k x fp ] + ki p x f i = refl-hom + ki {a} p x .x ii = begin + x ∙ π' ≈⟨ cdr e2 ⟩ + x ∙ ○ (a ∧ 1) ≈↑⟨ cdr e2 ⟩ + x ∙ (○ a ∙ π ) ≈⟨ assoc ⟩ + (x ∙ ○ a ) ∙ π ≈⟨ car (Poly.idx p) ⟩ + id1 A a ∙ π ≈⟨ idL ⟩ + k x ii ∎ + ki p x .(< f₁ , f₂ > ) (iii {_} {_} {_} {f₁}{ f₂} fp₁ fp₂ ) = begin + < f₁ , f₂ > ∙ π' ≈⟨ IsCCC.distr-π isCCC ⟩ + < f₁ ∙ π' , f₂ ∙ π' > ≈⟨ π-cong (ki p x f₁ fp₁) (ki p x f₂ fp₂) ⟩ + k x (iii fp₁ fp₂ ) ∎ + ki p x .((A Category.o _) _) (iv {_} {_} {_} {f₁} {f₂} fp fp₁) = begin + (f₁ ∙ f₂ ) ∙ π' ≈↑⟨ assoc ⟩ + f₁ ∙ ( f₂ ∙ π') ≈↑⟨ cdr (IsCCC.e3b isCCC) ⟩ + f₁ ∙ ( π' ∙ < π , (f₂ ∙ π' ) >) ≈⟨ assoc ⟩ + (f₁ ∙ π' ) ∙ < π , (f₂ ∙ π' ) > ≈⟨ resp (π-cong refl-hom (ki p x _ fp₁) ) (ki p x _ fp) ⟩ + k x fp ∙ < π , k x fp₁ > ≈⟨⟩ + k x (iv fp fp₁ ) ∎ + ki p x .((C CCC.*) _) (v fp) = {!!} + ki p x f (φ-cong x₁ fp) = {!!} + k-cong : {a b c : Obj A} → (f g : Poly a c b ) + → Poly.x f ≡ Poly.x g + → A [ Poly.f f ≈ Poly.f g ] → A [ k (Poly.x f) (Poly.phi f) ≈ k (Poly.x g) (Poly.phi g) ] + k-cong {a} {b} {c} f g refl f=f = kcong f (Poly.x f ) (Poly.f f) (Poly.f g) f=f ( Poly.phi f ) ( Poly.phi g) where + kcong : {a b b' c c' : Obj A} → Poly a c' b' + → (x : Hom A 1 a) → (f g : Hom A b c ) → (f=g : f ≈ g ) → (fp : φ x {b} {c} f )( gp : φ x {b} {c} g ) → A [ k x fp ≈ k x gp ] + kcong {a} {b} {c} p x f g f=g i i = resp refl-hom f=g + kcong {a} {.(CCC.1 C)} {_} {.a} p x f .x f=g i ii = begin + k x {f} i ≈⟨⟩ + f ∙ π' ≈⟨ car f=g ⟩ + x ∙ π' ≈⟨ ki p x x ii ⟩ + k x ii ∎ + kcong {a} {b} {_} {.((C CCC.∧ _) _)} p x f .(< g₁ , g₂ >) f=g i (iii {_} {_} {_} {g₁} {g₂} gp₁ gp₂) = begin + k x i ≈⟨ car f=g ⟩ + < g₁ , g₂ > ∙ π' ≈⟨ IsCCC.distr-π isCCC ⟩ + < g₁ ∙ π' , g₂ ∙ π' > ≈⟨ IsCCC.π-cong isCCC (ki p x _ gp₁ ) (ki p x _ gp₂) ⟩ + < k x gp₁ , k x gp₂ > ≈⟨⟩ + k x (iii gp₁ gp₂) ∎ + kcong {a} {b} {_} {c} p x f .((A Category.o _) _) f=g i (iv gp gp₁) = {!!} + kcong {a} {b} {_} {.((C CCC.<= _) _)} p x f .((C CCC.*) _) f=g i (v gp) = {!!} + kcong {a} {b} {_} {c} p x f g f=g i (φ-cong x₁ gp) = {!!} + kcong {a} {.(CCC.1 C)} {_} {.a} p x .x g f=g ii gp = {!!} + kcong {a} {b} {_} {.((C CCC.∧ _) _)} p x .(CCC.< C , _ > _) g f=g (iii fp fp₁) gp = {!!} + kcong {a} {b} {_} {c} p x .((A Category.o _) _) g f=g (iv fp fp₁) gp = {!!} + kcong {a} {b} {_} {.((C CCC.<= _) _)} p x .((C CCC.*) _) g f=g (v fp) gp = {!!} + kcong {a} {b} {_} {c} p x f g f=g (φ-cong x₁ fp) gp = {!!} + -- proof in p.59 Lambek functional-completeness : {a b c : Obj A} ( p : Poly a c b ) → Functional-completeness p functional-completeness {a} {b} {c} p = record { fun = k (Poly.x p) (Poly.phi p) ; fp = fc0 (Poly.x p) (Poly.f p) (Poly.phi p) - ; uniq = λ f eq → uniq (Poly.x p) (Poly.f p) (Poly.phi p) f eq + ; uniq = λ f eq → uniq p (Poly.x p) (Poly.f p) (Poly.phi p) f eq } where fc0 : {a b c : Obj A} → (x : Hom A 1 a) (f : Hom A b c) (phi : φ x {b} {c} f ) → A [ k x phi ∙ < x ∙ ○ b , id1 A b > ≈ f ] @@ -182,36 +231,14 @@ -- -- f ∙ < x ∙ ○ b , id1 A b > ≈ f → f ≈ k x (phi p) -- - ki : {a b c : Obj A} → (x : Hom A 1 a) → (f : Hom A b c ) → (fp : φ x {b} {c} f ) → A [ f ∙ π' ≈ k x fp ] - ki x f i = refl-hom - ki {a} x .x ii = begin - x ∙ π' ≈⟨ {!!} ⟩ - x ∙ ○ (a ∧ 1) ≈⟨ {!!} ⟩ - x ∙ (○ a ∙ π ) ≈⟨ {!!} ⟩ - (x ∙ ○ a ) ∙ π ≈⟨ {!!} ⟩ - id1 A a ∙ π ≈⟨ {!!} ⟩ - k x ii ∎ - ki x .(< f₁ , f₂ > ) (iii {_} {_} {_} {f₁}{ f₂} fp₁ fp₂ ) = begin - < f₁ , f₂ > ∙ π' ≈⟨ IsCCC.distr-π isCCC ⟩ - < f₁ ∙ π' , f₂ ∙ π' > ≈⟨ π-cong (ki x f₁ fp₁) (ki x f₂ fp₂) ⟩ - k x (iii fp₁ fp₂ ) ∎ - ki x .((A Category.o _) _) (iv {_} {_} {_} {f₁} {f₂} fp fp₁) = begin - (f₁ ∙ f₂ ) ∙ π' ≈⟨ {!!} ⟩ - f₁ ∙ ( f₂ ∙ π') ≈⟨ {!!} ⟩ - f₁ ∙ ( π' ∙ < π , (f₂ ∙ π' ) >) ≈⟨ {!!} ⟩ - (f₁ ∙ π' ) ∙ < π , (f₂ ∙ π' ) > ≈⟨ {!!} ⟩ - k x fp ∙ < π , k x fp₁ > ≈⟨⟩ - k x (iv fp fp₁ ) ∎ - ki x .((C CCC.*) _) (v fp) = {!!} - ki x f (φ-cong x₁ fp) = {!!} - uniq : {a b c : Obj A} → (x : Hom A 1 a) (f : Hom A b c) (phi : φ x {b} {c} f ) (f' : Hom A (a ∧ b) c) → + uniq : {a b c : Obj A} → (p : Poly a c b) → (x : Hom A 1 a) (f : Hom A b c) (phi : φ x {b} {c} f ) (f' : Hom A (a ∧ b) c) → A [ f' ∙ < x ∙ ○ b , id1 A b > ≈ f ] → A [ f' ≈ k x phi ] - uniq {a} {b} {c} x f phi f' fx=p = sym (begin - k x phi ≈↑⟨ ki x f phi ⟩ + uniq {a} {b} {c} p x f phi f' fx=p = sym (begin + k x phi ≈↑⟨ ki p x f phi ⟩ k x {f} i ≈↑⟨ car fx=p ⟩ k x {f' ∙ < x ∙ ○ b , id1 A b >} i ≈⟨ trans-hom (sym assoc) (cdr (IsCCC.distr-π isCCC) ) ⟩ -- ( f' ∙ < x ∙ ○ b , id1 A b> ) ∙ π' f' ∙ k x {< x ∙ ○ b , id1 A b >} (iii i i ) -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) - ≈⟨ cdr (π-cong (ki x ( x ∙ ○ b) (iv ii i) ) refl-hom) ⟩ + ≈⟨ cdr (π-cong (ki p x ( x ∙ ○ b) (iv ii i) ) refl-hom) ⟩ f' ∙ < k x {x ∙ ○ b} (iv ii i ) , k x {id1 A b} i > ≈⟨ refl-hom ⟩ f' ∙ < k x {x} ii ∙ < π , k x {○ b} i > , k x {id1 A b} i > -- ( f' ∙ < π ∙ < π , (x ∙ ○ b) ∙ π' > , id1 A b ∙ π' > ) ≈⟨ cdr (π-cong (cdr (π-cong refl-hom (car e2))) idL ) ⟩ @@ -220,34 +247,6 @@ f' ∙ id1 A _ ≈⟨ idR ⟩ f' ∎ ) - ki : {a b c : Obj A} → (x : Hom A 1 a) → (f : Hom A b c ) → (fp : φ x {b} {c} f ) → A [ f ∙ π' ≈ k x fp ] - ki = {!!} - k-cong : {a b c : Obj A} → (f g : Poly a c b ) - → Poly.x f ≡ Poly.x g - → A [ Poly.f f ≈ Poly.f g ] → A [ k (Poly.x f) (Poly.phi f) ≈ k (Poly.x g) (Poly.phi g) ] - k-cong {a} {b} {c} f g refl f=f = kcong (Poly.x f ) (Poly.f f) (Poly.f g) f=f ( Poly.phi f ) ( Poly.phi g) where - kcong : {a b c : Obj A} → (x : Hom A 1 a) → (f g : Hom A b c ) → (f=g : f ≈ g ) → (fp : φ x {b} {c} f )( gp : φ x {b} {c} g ) → A [ k x fp ≈ k x gp ] - kcong {a} {b} {c} x f g f=g i i = resp refl-hom f=g - kcong {a} {.(CCC.1 C)} {.a} x f .x f=g i ii = begin - k x {f} i ≈⟨⟩ - f ∙ π' ≈⟨ car f=g ⟩ - x ∙ π' ≈⟨ ki x x ii ⟩ - k x ii ∎ - kcong {a} {b} {.((C CCC.∧ _) _)} x f .(< g₁ , g₂ >) f=g i (iii {_} {_} {_} {g₁} {g₂} gp₁ gp₂) = begin - k x i ≈⟨ car f=g ⟩ - < g₁ , g₂ > ∙ π' ≈⟨ IsCCC.distr-π isCCC ⟩ - < g₁ ∙ π' , g₂ ∙ π' > ≈⟨ IsCCC.π-cong isCCC (ki x _ gp₁ ) (ki x _ gp₂) ⟩ - < k x gp₁ , k x gp₂ > ≈⟨⟩ - k x (iii gp₁ gp₂) ∎ - kcong {a} {b} {c} x f .((A Category.o _) _) f=g i (iv gp gp₁) = {!!} - kcong {a} {b} {.((C CCC.<= _) _)} x f .((C CCC.*) _) f=g i (v gp) = {!!} - kcong {a} {b} {c} x f g f=g i (φ-cong x₁ gp) = {!!} - kcong {a} {.(CCC.1 C)} {.a} x .x g f=g ii gp = {!!} - kcong {a} {b} {.((C CCC.∧ _) _)} x .(CCC.< C , _ > _) g f=g (iii fp fp₁) gp = {!!} - kcong {a} {b} {c} x .((A Category.o _) _) g f=g (iv fp fp₁) gp = {!!} - kcong {a} {b} {.((C CCC.<= _) _)} x .((C CCC.*) _) g f=g (v fp) gp = {!!} - kcong {a} {b} {c} x f g f=g (φ-cong x₁ fp) gp = {!!} - -- functional completeness ε form --
--- a/src/ToposIL.agda Wed May 12 00:42:14 2021 +0900 +++ b/src/ToposIL.agda Wed May 12 11:30:41 2021 +0900 @@ -55,8 +55,8 @@ _,_⊢_ {a} {b} p p1 q = {c : Obj A} (h : Hom A c b ) → A [ Poly.f p ∙ h ≈ ⊤ ∙ ○ c ] → A [ Poly.f p1 ∙ h ≈ ⊤ ∙ ○ c ] → A [ Poly.f q ∙ h ≈ ⊤ ∙ ○ c ] - expr : {a b c : Obj A} (p : Hom A 1 Ω ) → ( x : Hom A 1 a ) → Poly a Ω 1 - expr p x = record { x = x ; f = p ; phi = i } + -- expr : {a b c : Obj A} (p : Hom A 1 Ω ) → ( x : Hom A 1 a ) → Poly a Ω 1 + -- expr p x = record { x = x ; f = p ; phi = i ; idx = {!!} } ⊨_ : (p : Hom A 1 Ω ) → Set ( c₁ ⊔ c₂ ⊔ ℓ ) ⊨ p = {c : Obj A} (h : Hom A c 1 ) → A [ p ∙ h ≈ ⊤ ∙ ○ c ] @@ -91,7 +91,7 @@ ; _∈_ = λ {a} x α → A [ ε o < α , x > ] -- { x ∈ a | φ x } : P a ; select = λ {a} φ → Fc.g ( fc t φ ) - ; apply = λ {a} φ x → record { x = x ; f = Functional-completeness.fun (fc0 t φ ) ∙ < x ∙ ○ _ , id1 A _ > ; phi = i } + ; apply = λ {a} φ x → record { x = x ; f = Functional-completeness.fun (fc0 t φ ) ∙ < x ∙ ○ _ , id1 A _ > ; phi = i ; idx = Poly.idx φ } ; isIL = record { isSelect = {!!} ; uniqueSelect = {!!}