Mercurial > hg > Members > kono > Proof > category
changeset 586:c78df4c0453c
on going ..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 11 May 2017 17:06:27 +0900 |
parents | 59c3de1c4043 |
children | d3bea3ac919e |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 16 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Thu May 11 15:58:34 2017 +0900 +++ b/SetsCompleteness.agda Thu May 11 17:06:27 2017 +0900 @@ -188,6 +188,16 @@ open import HomReasoning open NTrans +cequ : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) + → ( e : Hom Sets ( slim (ΓObj s Γ) (ΓMap s Γ)) (sproduct (Obj C) (ΓObj s Γ) )) (se : slim (ΓObj s Γ) (ΓMap s Γ) ) → (b : Obj C ) + → sproduct (Obj C) (ΓObj s Γ) +cequ C I s Γ e se b = equ {_} {sproduct (Obj C) (ΓObj s Γ)} {ΓObj s Γ b} {λ x → proj x b } {λ x → proj x b} (elem (e se) refl) +cone-equ : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) + → ( e : Hom Sets ( slim (ΓObj s Γ) (ΓMap s Γ) ) (sproduct (Obj C) (ΓObj s Γ) ) ) + → (a b : Obj C) (f : I → I ) → (se : slim (ΓObj s Γ) (ΓMap s Γ) ) + → sequ (slim (ΓObj s Γ) (ΓMap s Γ)) (FObj Γ b) (λ x → FMap Γ (hom← s f) (proj (e x) a) ) (λ x → proj (e x) b ) +cone-equ C I s Γ e a b f se = elem se ( fe=ge0 (slequ se ( λ x → record { proj = λ i → proj ( e se ) i } ) a b f ) ) + Cone : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) → ( e : Hom Sets ( slim (ΓObj s Γ) (ΓMap s Γ) ) (sproduct (Obj C) (ΓObj s Γ) ) ) → NTrans C Sets (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ))) Γ @@ -196,23 +206,18 @@ {λ x → proj x i} {λ x → proj x i} (elem (e se ) refl )) i ; isNTrans = record { commute = commute1 } } where - cequ : (se : slim (ΓObj s Γ) (ΓMap s Γ) ) → (b : Obj C ) → sproduct (Obj C) (ΓObj s Γ) - cequ se b = equ {_} {sproduct (Obj C) (ΓObj s Γ)} {ΓObj s Γ b} {λ x → proj x b } {λ x → proj x b} (elem (e se) refl) - cone-equ : (a b : Obj C) (f : I → I ) → (se : slim (ΓObj s Γ) (ΓMap s Γ) ) - → sequ (slim (ΓObj s Γ) (ΓMap s Γ)) (FObj Γ b) (λ x → FMap Γ (hom← s f) (proj (e x) a) ) (λ x → proj (e x) b ) - cone-equ a b f se = elem se ( fe=ge0 (slequ se ( λ x → record { proj = λ i → proj ( e se ) i } ) a b f ) ) - commute1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ se → proj (cequ se b) a) ] - ≈ Sets [ (λ se → proj (cequ se b) b) o FMap (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ) )) f ] ] + commute1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ se → proj (cequ C I s Γ e se b) a) ] + ≈ Sets [ (λ se → proj (cequ C I s Γ e se b) b) o FMap (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ) )) f ] ] commute1 {a} {b} {f} = extensionality Sets ( λ se → begin - (Sets [ FMap Γ f o (λ se → proj (cequ se b) a) ]) se + (Sets [ FMap Γ f o (λ se → proj (cequ C I s Γ e se b) a) ]) se ≡⟨⟩ FMap Γ f (proj (e se) a ) ≡⟨ ≡cong ( λ g → FMap Γ g (proj (e se) a)) (sym ( hom-iso s ) ) ⟩ FMap Γ (hom← s ( hom→ s f)) (proj (e se) a) - ≡⟨ fe=ge0 (cone-equ a b ( hom→ s f) se ) ⟩ + ≡⟨ fe=ge0 (cone-equ C I s Γ e a b ( hom→ s f) se ) ⟩ proj (e se) b ≡⟨⟩ - (Sets [ (λ se → proj (cequ se b) b) o FMap (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ) )) f ]) se + (Sets [ (λ se → proj (cequ C I s Γ e se b) b) o FMap (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ) )) f ]) se ∎ ) where open import Relation.Binary.PropositionalEquality open ≡-Reasoning @@ -234,5 +239,5 @@ → ΓMap s Γ f (proj p i) ≡ proj p j comm2 e {i} {j} f p = {!!} limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ)) - limit1 a t = λ x → record { slequ = λ e i j f → elem i {!!} + limit1 a t = λ x → record { slequ = λ e i j f → ? ; slprod = record { proj = λ i → TMap t i x } }