Mercurial > hg > Members > kono > Proof > category
changeset 587:d3bea3ac919e
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 12 May 2017 10:25:05 +0900 |
parents | c78df4c0453c |
children | 11b5eeb4a9e7 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 19 insertions(+), 26 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Thu May 11 17:06:27 2017 +0900 +++ b/SetsCompleteness.agda Fri May 12 10:25:05 2017 +0900 @@ -180,7 +180,7 @@ ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I → I ) → sobj i → sobj j ) : Set c₂ where field - slequ : ( e : OC → sproduct OC sobj ) (i j : OC) (f : I → I ) → sequ OC (sobj j) (λ x → smap f (proj (e x) i) ) (λ x → proj (e x) j ) + slequ : (i j : OC) (f : I → I ) → sequ (sproduct OC sobj) (sobj j) (λ x → smap f (proj x i) ) (λ x → proj x j ) slprod : sproduct OC sobj open slim @@ -188,36 +188,30 @@ open import HomReasoning open NTrans -cequ : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) - → ( e : Hom Sets ( slim (ΓObj s Γ) (ΓMap s Γ)) (sproduct (Obj C) (ΓObj s Γ) )) (se : slim (ΓObj s Γ) (ΓMap s Γ) ) → (b : Obj C ) - → sproduct (Obj C) (ΓObj s Γ) -cequ C I s Γ e se b = equ {_} {sproduct (Obj C) (ΓObj s Γ)} {ΓObj s Γ b} {λ x → proj x b } {λ x → proj x b} (elem (e se) refl) cone-equ : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) - → ( e : Hom Sets ( slim (ΓObj s Γ) (ΓMap s Γ) ) (sproduct (Obj C) (ΓObj s Γ) ) ) → (a b : Obj C) (f : I → I ) → (se : slim (ΓObj s Γ) (ΓMap s Γ) ) - → sequ (slim (ΓObj s Γ) (ΓMap s Γ)) (FObj Γ b) (λ x → FMap Γ (hom← s f) (proj (e x) a) ) (λ x → proj (e x) b ) -cone-equ C I s Γ e a b f se = elem se ( fe=ge0 (slequ se ( λ x → record { proj = λ i → proj ( e se ) i } ) a b f ) ) + → sequ (slim (ΓObj s Γ) (ΓMap s Γ)) (FObj Γ b) (λ x → FMap Γ (hom← s f) (proj (slprod x) a) ) (λ x → proj (slprod x) b ) +cone-equ C I s Γ a b f se = elem se {!!} -- (( fe=ge0 (slequ se a b f )) ) Cone : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) - → ( e : Hom Sets ( slim (ΓObj s Γ) (ΓMap s Γ) ) (sproduct (Obj C) (ΓObj s Γ) ) ) → NTrans C Sets (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ))) Γ -Cone C I s Γ e = record { +Cone C I s Γ = record { TMap = λ i → λ se → proj ( equ {_} { sproduct (Obj C) (ΓObj s Γ)} {FObj Γ i} - {λ x → proj x i} {λ x → proj x i} (elem (e se ) refl )) i + {λ x → proj x i} {λ x → proj x i} (elem (slprod se) refl )) i ; isNTrans = record { commute = commute1 } } where - commute1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ se → proj (cequ C I s Γ e se b) a) ] - ≈ Sets [ (λ se → proj (cequ C I s Γ e se b) b) o FMap (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ) )) f ] ] + commute1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ se → proj (slprod se) a) ] + ≈ Sets [ (λ se → proj (slprod se) b) o FMap (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ) )) f ] ] commute1 {a} {b} {f} = extensionality Sets ( λ se → begin - (Sets [ FMap Γ f o (λ se → proj (cequ C I s Γ e se b) a) ]) se + (Sets [ FMap Γ f o (λ se → proj (slprod se) a) ]) se ≡⟨⟩ - FMap Γ f (proj (e se) a ) - ≡⟨ ≡cong ( λ g → FMap Γ g (proj (e se) a)) (sym ( hom-iso s ) ) ⟩ - FMap Γ (hom← s ( hom→ s f)) (proj (e se) a) - ≡⟨ fe=ge0 (cone-equ C I s Γ e a b ( hom→ s f) se ) ⟩ - proj (e se) b + FMap Γ f (proj (slprod se) a ) + ≡⟨ ≡cong ( λ g → FMap Γ g (proj (slprod se) a)) (sym ( hom-iso s ) ) ⟩ + FMap Γ (hom← s ( hom→ s f)) (proj (slprod se) a) + ≡⟨ fe=ge0 (cone-equ C I s Γ a b ( hom→ s f) se ) ⟩ + proj (slprod se) b ≡⟨⟩ - (Sets [ (λ se → proj (cequ C I s Γ e se b) b) o FMap (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ) )) f ]) se + (Sets [ (λ se → proj (slprod se) b) o FMap (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ) )) f ]) se ∎ ) where open import Relation.Binary.PropositionalEquality open ≡-Reasoning @@ -227,17 +221,16 @@ → Limit Sets C Γ SetsLimit { c₂} C I s Γ = record { a0 = slim (ΓObj s Γ) (ΓMap s Γ) - ; t0 = Cone C I s Γ ( λ se → slprod se ) + ; t0 = Cone C I s Γ ; isLimit = record { limit = limit1 ; t0f=t = λ {a t i } → {!!} ; limit-uniqueness = λ {a t i } → {!!} } } where - comm2 : ( e : Hom Sets ( slim (ΓObj s Γ) (ΓMap s Γ) ) (sproduct (Obj C) (ΓObj s Γ) ) ) {i j : Obj C } ( f : I → I ) - → (p : sproduct (Obj C) (ΓObj s Γ) ) - → ΓMap s Γ f (proj p i) ≡ proj p j - comm2 e {i} {j} f p = {!!} + -- ( e : Obj C → sproduct (Obj C) sobj ) + -- sequ (Obj C) (ΓObj s Γ j) (λ x₁ → ΓMap s Γ f (proj (e x₁) i)) (λ x₁ → proj (e x₁) j) limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ)) - limit1 a t = λ x → record { slequ = λ e i j f → ? + limit1 a t = λ x → record { slequ = λ i j f → k (λ p → + iproduct1 (Obj C) (ΓObj s Γ) (TMap t) x) (extensionality Sets ( λ y → ? )) x ; slprod = record { proj = λ i → TMap t i x } }