Mercurial > hg > Members > kono > Proof > category
changeset 184:d2d749318bee
oeration
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 28 Aug 2013 18:28:23 +0900 |
parents | ea6fc610b480 |
children | 173d078ee443 |
files | yoneda.agda |
diffstat | 1 files changed, 17 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/yoneda.agda Wed Aug 28 17:29:01 2013 +0900 +++ b/yoneda.agda Wed Aug 28 18:28:23 2013 +0900 @@ -51,8 +51,8 @@ open import Function -CF : (a : Obj A) → Functor (Category.op A) Sets -CF a = record { +CF : {a : Obj A} → Functor (Category.op A) (Sets {c₂}) +CF {a} = record { FObj = λ b → Hom (Category.op A) a b ; FMap = λ {b c : Obj A } → λ ( f : Hom A c b ) → λ (g : Hom A b a ) → (Category.op A) [ f o g ] ; isFunctor = record { @@ -79,3 +79,18 @@ Category.op A [ g o x ] ∎ ) +YObj = Functor (Category.op A) (Sets {c₂}) +YHom = λ (f : YObj ) → λ (g : YObj ) → NTrans (Category.op A) Sets f g + +open NTrans +Yid : {a : YObj} → YHom a a +Yid {a} = record { TMap = \a -> \x -> x ; isNTrans = isNTrans1 {a} } where + isNTrans1 : {a : YObj } → IsNTrans (Category.op A) (Sets {c₂}) a a (\a -> \x -> x ) + isNTrans1 {a} = record { commute = refl } + +_+_ : {a b c : YObj} → YHom b c → YHom a b → YHom a c +_+_ = {!!} + +isSetsAop : IsCategory YObj YHom _≡_ _+_ Yid +isSetsAop = {!!} +